System of units: MKSA

A monochromatic plane-wave, having frequency ω and wave-vector \boldsymbol{k}, propagates in free space. For all practical purposes, one may assume that ω is a real-valued scalar, while \boldsymbol{k} is a complexvalued vector, that is, $\boldsymbol{k}=\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}$. Let the scalar and vector potentials associated with this planewave be written as $\psi(\boldsymbol{r}, t)=\psi_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$ and $\boldsymbol{A}(\boldsymbol{r}, t)=\boldsymbol{A}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$, respectively.
a) Write the differential equation relating the scalar and vector potentials in the Lorenz gauge, then derive the relation among $\psi_{0}, \boldsymbol{A}_{0}, \boldsymbol{k}$ and ω assuming the aforementioned plane-wave satisfies the Lorenz gauge.
b) Find expressions for the E - and B-fields of the plane-wave in terms of $\psi_{0}, \boldsymbol{A}_{0}, \boldsymbol{k}$ and ω.
c) Write the differential form of Maxwell's equations, then obtain the constraints on $\psi_{0}, \boldsymbol{A}_{0}, \boldsymbol{k}$ and ω that ensure the above plane-wave is a solution of Maxwell's equations.
d) Specify the condition(s) under which the plane-wave is evanescent (i.e., inhomogeneous).
e) Specify the condition(s) under which the plane-wave is homogeneous and linearly polarized.
f) Specify the condition(s) under which the plane-wave is homogeneous and circularly polarized.
g) In terms of $\boldsymbol{A}_{0}, \psi_{0}, \boldsymbol{k}$ and ω, find the time-averaged rate-of-flow of electromagnetic energy (per unit area per unit time) for the plane-wave.
Hint: You might find the following vector identities useful:

$$
\begin{gathered}
A \cdot(B \times C)=B \cdot(\boldsymbol{C} \times \boldsymbol{A})=\boldsymbol{C} \cdot(\boldsymbol{A} \times \boldsymbol{B}) \\
\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{C}) \boldsymbol{B}-(\boldsymbol{A} \cdot \boldsymbol{B}) \boldsymbol{C}
\end{gathered}
$$

Fall 2012 Written Comprehensive Exam

Opti 501

System of units: MKSA

A pair of monochromatic, linearly-polarized, counter-propagating plane waves of frequency ω is trapped in free space between two perfectly electrically conducting flat mirrors, as shown in the figure. The distance between the mirrors is $L=N \lambda_{0} / 2$, where $\lambda_{0}=2 \pi c / \omega$ is the vacuum wavelength, and N is an arbitrary integer. The E-fields of the two plane-waves are given by $E_{0} \hat{\boldsymbol{X}} \sin (k z \pm \omega t)$, where $k=\omega / c$. The cross-sectional area A of the two beams may be assumed to be large and uniform throughout the cavity.

1 Pt d) Find the kinetic energy $1 / 2 M V^{2}$ of the mirror by calculating the mechanical work done by the radiation pressure in moving the mirror from $z=L$ to $z=L+\Delta z$.
$1 \mathrm{Pt} \quad$ e) Find the electromagnetic momentum transferred to the mirror during the interval $\Delta t=2 L / c$.
a) Write expressions for the total E - and H-fields as functions of z and t within the cavity.
b) Find the total electromagnetic energy contained within the volume $A L$ of the cavity. Considering that each photon is known to have an energy $\hbar \omega$, where \hbar is Planck's reduced constant, how many photons are trapped inside the cavity?
c) Find the induced current-density $\boldsymbol{J}_{s}(t)$ at the surface of each mirror, then use this currentdensity to determine the Lorentz force exerted by the trapped radiation on each mirror.

At $t=t_{0}$ the brakes preventing the motion of the mirror located at $z=L$ are released. Thereafter, radiation pressure pushes this mirror forward along the rail, with negligible losses due to friction. A short time later, at $t=t_{0}+\Delta t$, where $\Delta t=2 L / c$, the mirror will be at $z=L+\Delta z$ and will have acquired a velocity $V \hat{\mathbf{z}}$. Assume the mass M of the mirror is sufficiently large that relativistic effects may be ignored.
f) Assuming that the number N of half-wavelengths that fit within the length of the cavity remains unchanged, find the relative shift in frequency, $\Delta \omega / \omega$, as a result of the expansion of the cavity from L to $L+\Delta z$.
g) Combining the results obtained in parts (d) - (f), find the relation between the frequency shift $\Delta \omega$ and the acquired mirror velocity V at $t=t_{0}+\Delta t$.

Hint: $\sin (a)+\sin (b)=2 \sin [1 / 2(a+b)] \cos [1 / 2(a-b)]$ and $\sin (a)-\sin (b)=2 \sin [1 / 2(a-b)] \cos [1 / 2(a+b)]$.

