Fall 2011 Written Comprehensive Exam

Opti 501

System of units: MKSA

A monochromatic and homogeneous plane-wave of frequency ω_{0} arrives at an oblique angle θ at the interface between two dielectric media of refractive indices n_{1} and n_{2}, as shown. (As usual, you may set the relative permeabilities μ_{1} and μ_{2} of the two media equal to 1.0 . You may also assume that both n_{1} and n_{2} are real-valued, positive, and greater than or equal to unity.)

$(4$ pts) a) Write expressions for the E - and H-fields of the incident, reflected, and transmitted beams.
$\left(\begin{array}{ll}2 & \text { pts })\end{array} \quad\right.$ b) Derive the Fresnel reflection and transmission coefficients at the interface.
c) Under what circumstances will the reflection coefficient for the p-polarized beam vanish? You must base your argument on the expression obtained in part (b) for the Fresnel reflection coefficient.
(Hint: This is the case of Brewster's incidence.)
(2 pts) d) Based on the reflection coefficients derived in part (b), specify the conditions for total internal reflection of both p - and s-polarized incident light at the interface.

Fall 2011 Written Comprehensive Exam

Opti 501

System of units: MKSA

It is a well-known fact that, at normal incidence, the reflectivity of a transparent dielectric slab of refractive index n and thickness $d=\lambda_{0} /(2 n)$ is precisely equal to zero; here $\lambda_{0}=2 \pi c / \omega_{0}$ is the vacuum wavelength of the incident beam, which, as shown in the figure, is a homogeneous, monochromatic plane-wave of frequency ω_{0}. (You may assume that the incident beam is linearly polarized along the x-axis.)

$(4 \mathrm{pt}) \quad$ a) Using the aforementioned fact, determine the E - and H-fields of the forward- and backwardpropagating plane-waves inside the slab, as well as the E - and H-fields of the transmitted beam.
$(4 \mathrm{pt}) \quad$ b) Determine the time-averaged Poynting vector inside the slab, and show that the rate of flow of optical energy per unit cross-sectional area inside the slab is the same as that of the incident beam, and also the same as that of the transmitted beam.
$(2 \mathrm{pts}) \quad$ c) In what ways will the results obtained in parts (a) and (b) change, if the thickness d of the slab happens to be an integer-multiple of $\lambda_{0} /(2 n)$, that is, if $d=m \lambda_{0} /(2 n)$, where $m \neq 1$ is an arbitrary integer?

