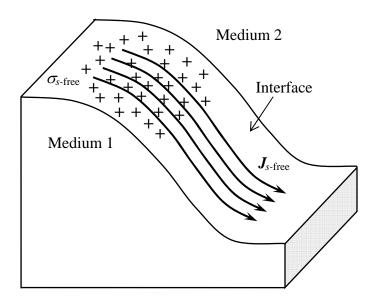
Problem 1. Opti 501 Prelims, Fall 2009

System of units: MKSA

Corresponding to the four Maxwell equations are four boundary conditions that relate the field components E_{\parallel} , H_{\parallel} , D_{\perp} and B_{\perp} on the two sides of a sharply defined interface between two neighboring media. The subscripts \parallel and \perp identify the local field components parallel and perpendicular to the interface, respectively. In general, the interface may contain a surface-charge-density $\sigma_{s-free}(\mathbf{r},t)$, and be host to a surface-current-density $J_{s-free}(\mathbf{r},t)$. Here $\mathbf{r} = (x, y, z)$ is an arbitrary point at the interface, and t is an arbitrary instant of time. In what follows, \mathbf{r}^+ will be a point immediately above the interface, while \mathbf{r}^- will be the corresponding point immediately below the interface.



- (2 pts) a) Use Maxwell's first equation, $\nabla \cdot D = \rho_{\text{free}}$, to relate $D_{\perp}(\mathbf{r}^+, t)$ and $D_{\perp}(\mathbf{r}^-, t)$.
- (4 pts) b) Use Maxwell's second equation, $\nabla \times H = J_{\text{free}} + \partial D/\partial t$, to relate $H_{\parallel}(\mathbf{r}^+, t)$ and $H_{\parallel}(\mathbf{r}^-, t)$.
- (2 pts) c) Use Maxwell's third equation, $\nabla \times E = -\partial B/\partial t$, to relate $E_{\parallel}(\mathbf{r}^+, t)$ and $E_{\parallel}(\mathbf{r}^-, t)$.
- (2 pts) d) Use Maxwell's fourth equation, $\nabla \cdot \boldsymbol{B} = 0$, to relate $\boldsymbol{B}_{\perp}(\boldsymbol{r}^{+},t)$ and $\boldsymbol{B}_{\perp}(\boldsymbol{r}^{-},t)$.

Problem 2. Opti 501 Prelims, Fall 2009

System of units: MKSA

A linearly-polarized, monochromatic plane-wave propagates along the *x*-axis, its *E*-field amplitude being $E(x,t) = E_0 \cos\{\omega[t-n(\omega)x/c]\}\hat{y}$. The host medium is a homogeneous, isotropic, non-magnetic (i.e., $\mu = \mu_0$), transparent dielectric, whose frequency-dependent refractive index is specified as $n(\omega) = \sqrt{\varepsilon(\omega)}$.

- (3 pts) a) Find the magnetic field H(x,t) of the plane-wave in terms of $E_0, c, \omega, n(\omega)$, and the impedance of the free space $Z_0 = \sqrt{\mu_0}/\varepsilon_0$.
- (3 pts) b) Find the Poynting vector S(x,t) of the above plane-wave, then determine the time-averaged rate-of-flow of optical energy (per unit area per unit time) along the *x*-axis.
- (4 pts) c) Assume a second plane-wave, *identical* with the one above *except* for its frequency ω' differing slightly from ω , is co-propagating with the above plane-wave. Write an expression for the combined *E*-field of the superposed plane-waves. From this expression, identify the carrier and the envelope of the beat waveform. In terms of *c*, $\omega_c = \frac{1}{2}(\omega + \omega')$, $\Delta \omega = \omega' \omega$, $n(\omega_c)$ and $dn(\omega)/d\omega$, what is the *phase* and *group* velocity of the combined waveform?