Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1. Start with the complete set of Maxwell's macroscopic equations for a system containing the sources $\rho_{\text {free }}(\boldsymbol{r}, t), \boldsymbol{J}_{\boldsymbol{f r r e e}}(\boldsymbol{r}, t), \boldsymbol{P}(\boldsymbol{r}, t)$, and $\boldsymbol{M}(\boldsymbol{r}, t)$.
a) Eliminate the fields $\boldsymbol{E}(\boldsymbol{r}, t)$ and $\boldsymbol{B}(\boldsymbol{r}, t)$ from all four equations, using an appropriate set of bound charge and bound current densities.
b) Transform the equations obtained in part (a) to the Fourier domain.
c) Without introducing any potentials, find the solutions to the equations obtained in part (b), that is, find expressions for $\boldsymbol{D}(\boldsymbol{k}, \omega)$ and $\boldsymbol{H}(\boldsymbol{k}, \omega)$ in terms of the known source distributions.

Hint: The vector identity $\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{C}) \boldsymbol{B}-(\boldsymbol{A} \cdot \boldsymbol{B}) \boldsymbol{C}$ may be helpful in answering part (c).
Problem 2. A point-charge q moves along the x-axis with a constant velocity V.
a) Using delta-function notation, write expressions for the charge and current densities.
b) Fourier transform the above charge and current densities, and find expressions for the scalar and vector potentials in the Fourier domain.
c) Perform an inverse Fourier transform on the potentials in order to bring them back into the space-time domain.
d) Find the electromagnetic fields $\boldsymbol{E}(\boldsymbol{r}, t)$ and $\boldsymbol{B}(\boldsymbol{r}, t)$ of the moving point-charge.

Problem 3. An electric point-dipole of constant strength $\boldsymbol{p}_{\mathrm{o}}$ is placed at the origin of a Cartesian coordinate system. With its dipole moment laying in the $x y$-plane, the dipole rotates around the z-axis at a constant angular velocity ω_{0}.
a) Use delta-function notation to express the polarization density $\boldsymbol{P}(\boldsymbol{r}, t)$ of the spinning dipole.
b) Determine the bound electric charge and current densities $\rho_{\mathrm{b}}^{(\mathrm{e})}(\boldsymbol{r}, t)$ and $\boldsymbol{J}_{\mathrm{b}}^{(\mathrm{e})}(\boldsymbol{r}, t)$.

c) Show that the charge and current densities obtained in part (b) satisfy the continuity equation.
d) Find the scalar and vector potentials $\psi(\boldsymbol{r}, t)$ and $\boldsymbol{A}(\boldsymbol{r}, t)$ produced by the spinning dipole.

Hint: In the case of an electric point-dipole $p_{0} \cos \left(\omega_{0} t\right) \hat{\mathbf{z}}$ aligned with the z-axis, Problem 17 has shown that the scalar and vector potentials in a spherical coordinate system are

$$
\begin{gathered}
\psi(\boldsymbol{r}, t)=\left(p_{0} \cos \theta / 4 \pi \varepsilon_{0} r^{2}\right)\left\{\cos \left[\omega_{0}(t-r / c)\right]-\left(\omega_{0} r / c\right) \sin \left[\omega_{0}(t-r / c)\right]\right\}, \\
\boldsymbol{A}(\boldsymbol{r}, t)=-\left(\mu_{0} p_{0} \omega_{0} \hat{Z} / 4 \pi r\right) \sin \left[\omega_{0}(t-r / c)\right] .
\end{gathered}
$$

You may use these results in answering part (d) of the problem.

