Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A uniformly-magnetized sphere of radius R and magnetization $M_{0} \hat{\mathbf{z}}$ is centered at the origin of the coordinate system.

4 Pts a) Find the bound magnetic charge-density $\rho_{\text {bound }}^{(m)}(\boldsymbol{r}, t)$ of the magnetized sphere.
b) Determine the bound electric current-density $\boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{r}, t)$ of the
 magnetized sphere.
c) What is the four-dimensional (4D) Fourier transform of $\boldsymbol{M}(\boldsymbol{r}, t)$?

Hint: Define the unit-sphere function Sphere $(r)=1.0$ when $r=\sqrt{x^{2}+y^{2}+z^{2}}<1.0$, and 0.0 when $r>1.0$. Also, use the fact that, in a spherical coordinate system, $\hat{\boldsymbol{z}}=(\cos \theta) \hat{\boldsymbol{r}}-(\sin \theta) \hat{\boldsymbol{\theta}}$. Carry out the Divergence, Curl, and Fourier transform operations in the spherical coordinate system.

Problem 2) A cylindrical wave emanating from an infinitely long, thin wire, carrying a current $I_{0} \cos \left(\omega_{0} t\right)$ along the z-axis, has the following E - and H -fields in the cylindrical coordinate system (ρ, ϕ, z):

$$
\begin{gathered}
\boldsymbol{E}(\boldsymbol{r}, t)=-\frac{1}{4} \mu_{0} I_{0} \omega_{0}\left[J_{0}\left(\rho \omega_{0} / c\right) \cos \left(\omega_{0} t\right)+Y_{0}\left(\rho \omega_{0} / c\right) \sin \left(\omega_{0} t\right)\right] \hat{\mathbf{z}} . \\
\boldsymbol{H}(\boldsymbol{r}, t)=\frac{I_{0} \omega_{0}}{4 c}\left[J_{1}\left(\rho \omega_{0} / c\right) \sin \left(\omega_{0} t\right)-Y_{1}\left(\rho \omega_{0} / c\right) \cos \left(\omega_{0} t\right)\right] \hat{\boldsymbol{\phi}} .
\end{gathered}
$$

a) Using the large-argument approximate form of the Bessel functions $J_{0}(\cdot), J_{1}(\cdot), Y_{0}(\cdot)$, and $Y_{1}(\cdot)$, find the electromagnetic field distribution in the far field (i.e., $\rho \gg \lambda_{0}$, where $\lambda_{0}=2 \pi c / \omega_{0}$ is the vacuum wavelength).
b) Determine the Poynting vector $\boldsymbol{S}(\boldsymbol{r}, t)$ in the far field.
c) Find the time-averaged Poynting vector, $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$, and show that the time-averaged energy leaving a cylinder of radius $R \gg \lambda_{0}$ that surrounds the radiating wire does not depend on the radius R of the cylinder.

Problem 3) An electromagnetic wave is trapped within an empty, perfectly-conducting, cylindrical canister. The cavity (i.e., the hollow interior of the canister) has radius R and length L, as shown. The E-field of the trapped mode is given by $\boldsymbol{E}(\rho, \phi, z, t)=E_{0} J_{0}\left(\rho \omega_{0} / c\right) \cos \left(\omega_{0} t\right) \hat{\mathbf{z}}$, where $J_{0}(\cdot)$ is a Bessel function of the first kind, $0^{\text {th }}$ order, ω_{0} is the oscillation frequency, ρ is the radial distance from the z-axis, and c is the speed of light in vacuum.
2 Pts a) Considering that, at the walls of the cavity, the tangential component of the E-field must vanish, identify the relation between R, ω_{0}, and the zeros $x_{1}, x_{2}, x_{3}, \ldots$ of $J_{0}(x)$.
3 Pts b) Using Maxwell's third equation, $\boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r}, t)=-\partial \boldsymbol{B}(\boldsymbol{r}, t) / \partial t$, determine the H-field distribution throughout the cavity. (Ignore the constant of integration.)
e) Verify that the charge-current continuity equation, $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{s}(\boldsymbol{r}, t)+\partial \sigma_{s}(\boldsymbol{r}, t) / \partial t=0$, is satisfied on all the interior surfaces.

