Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.
Problem 1) An infinitely large, thin sheet, located in the $x z$-plane, carries a constant, uniform surface-current density $J_{s o} \hat{\mathbf{z}}$, as shown. There is no electric charge anywhere in the system, that is $\rho(r, t)=0$.
a) Use Ampere's law in conjunction with symmetry considerations and Maxwell's $4^{\text {th }}$ equation ($\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$) to determine the H-field in the surrounding space.

7 Pts
b) Use the Fourier transform method to arrive at the same answer as found in part (a).

Hint: $\mathscr{F}\{\operatorname{sign}(y)\}=-2 \mathrm{i} / k_{y}$.
Problem 2) An infinitely long, thin, hollow cylinder of radius R is charged with a constant, uniform electric surface-charge density σ_{so}. There is no electric current anywhere in the system, that is $\boldsymbol{J}(\boldsymbol{r}, t)=0$.
a) Use Gauss's law in conjunction with symmetry considerations and Maxwell's $3^{\text {rd }}$ equation ($\boldsymbol{\nabla} \times \boldsymbol{E}=0$) to determine the E-field both inside and outside the cylinder.
8 Pts
b) Use the Fourier transform method to arrive at the same answer as found in part (a).

Hint: $\int_{0}^{2 \pi} \exp (\pm \mathrm{i} \beta \cos \phi) \mathrm{d} \phi=2 \pi J_{0}(\beta)$;
G \& R 3.915-2

$$
\begin{aligned}
& \int_{0}^{2 \pi} \cos \phi \exp (\pm \mathrm{i} \beta \cos \phi) \mathrm{d} \phi= \pm \mathrm{i} 2 \pi J_{1}(\beta) ; \\
& \int_{0}^{\infty} J_{0}(a x) J_{1}(b x) \mathrm{d} x= \begin{cases}1 / b ; & a<b, \\
1 /(2 b) ; & a=b, \\
0 ; & a>b .\end{cases}
\end{aligned}
$$

Do not confuse the symbol ρ used for charge-density with the same symbol used to represent radial distance in the cylindrical coordinate system.

