Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1. A monochromatic, homogeneous plane-wave propagates in free space along the direction $\hat{\boldsymbol{k}}$ of its real-valued \boldsymbol{k}-vector. The electric and magnetic fields are given by

$$
\begin{aligned}
& \boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\}, \\
& \boldsymbol{H}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\} .
\end{aligned}
$$

In general, \boldsymbol{E}_{0} and \boldsymbol{H}_{0} are complex-valued.
a) When is the plane-wave linearly-polarized?
b) When is the plane-wave circularly-polarized?
c) What is the relation between k and ω ?

1 pt
d) What is the relation between \boldsymbol{k} and the real and imaginary components $\boldsymbol{E}_{0}{ }^{\prime}$ and $\boldsymbol{E}_{0}{ }^{\prime \prime}$ of \boldsymbol{E}_{0} ?
e) What is the relation between \boldsymbol{k} and the real and imaginary components $\boldsymbol{H}_{0}{ }^{\prime}$ and $\boldsymbol{H}_{0}{ }^{\prime \prime}$ of \boldsymbol{H}_{0} ?

1 pt
f) How is \boldsymbol{H}_{0} related to \boldsymbol{k} and \boldsymbol{E}_{0} ? How are the magnitudes of $\boldsymbol{H}_{0}{ }^{\prime}, \boldsymbol{H}_{0}{ }^{\prime \prime}$ related to those of $\boldsymbol{E}_{0}{ }^{\prime}, \boldsymbol{E}_{0}{ }^{\prime \prime}$?

2 pts
g) Write an expression for the Poynting vector $\boldsymbol{S}(\boldsymbol{r}, t)$ of the plane-wave in terms of $\hat{\boldsymbol{k}}, \boldsymbol{E}_{0}{ }^{\prime}, \boldsymbol{E}_{0}{ }^{\prime \prime}, \omega$, $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$ and $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$. In what direction does the energy propagate in 3D space?

Problem 2. An evanescent, monochromatic, plane-wave resides in the region above (and also below) a single-mode dielectric slab waveguide, as shown. The electromagnetic fields of the evanescent wave in the half-space $z>0$ are given by

$$
\begin{aligned}
\boldsymbol{E}(\boldsymbol{r}, t) & =\operatorname{Re}\left\{\boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\}, \\
\boldsymbol{H}(\boldsymbol{r}, t) & =\operatorname{Re}\left\{\boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\} .
\end{aligned}
$$

In this problem $\boldsymbol{k}=k_{x} \hat{\boldsymbol{X}}+\mathrm{i} k_{z} \hat{\mathbf{z}}, \boldsymbol{E}_{0}=E_{x 0} \hat{\boldsymbol{X}}+\mathrm{i} E_{z 0} \hat{\boldsymbol{z}}$, and $\boldsymbol{H}_{0}=\mathrm{i} H_{y 0} \hat{y}$, with $k_{x}, k_{z}, E_{x 0}, E_{z 0}$, and $H_{y 0}$ all real-valued.

1 pt
a) What is the relation among k_{x}, k_{z}, and ω / c ?

1 pt
b) How are $k_{x}, k_{z}, E_{x 0}$ and $E_{z 0}$ related?

2 pts
c) How is $H_{y 0}$ related to k_{x}, ω, c, Z_{o} and $E_{x 0}$?

2 pts
d) Write an expression for the time-averaged
 Poynting vector $<\boldsymbol{S}(\boldsymbol{r}, t)>$ in terms of k_{x}, ω, c, Z_{o} and $E_{x 0}$. In what direction does the evanescent-field's energy flow?

Problem 3. A monochromatic, homogeneous, plane-wave propagates along the direction of its real-valued k-vector within an isotropic, homogeneous, linear medium specified by its dielectric permittivity $\varepsilon(\omega)$ and magnetic permeability $\mu(\omega)$. Both $\varepsilon(\omega)$ and $\mu(\omega)$ are real and positive at the frequency of interest, ω. The electric and magnetic fields are $\boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\}$ and $\boldsymbol{H}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\}$, where, in general, \boldsymbol{E}_{0} and \boldsymbol{H}_{0} are complex-valued.
$1 \mathrm{pt} \quad$ a) What is the relation between k, ω, c, and the material parameters?
$1 \mathrm{pt} \quad$ b) What is the relation between \boldsymbol{k} and the real and imaginary components $\boldsymbol{E}_{0}{ }^{\prime}$ and $\boldsymbol{E}_{0}{ }^{\prime \prime}$ of \boldsymbol{E}_{0} ?
$1 \mathrm{pt} \quad$ c) What is the relation between \boldsymbol{k} and the real and imaginary components $\boldsymbol{H}_{\mathrm{o}}{ }^{\prime}$ and $\boldsymbol{H}_{\mathrm{o}}{ }^{\prime \prime}$ of \boldsymbol{H}_{0} ?
$1 \mathrm{pt} \mathrm{d)} \mathrm{How} \mathrm{is} \boldsymbol{H}_{0}$ related to $\boldsymbol{k}, \boldsymbol{E}_{0}$, and the material parameters? How are the magnitudes of $\boldsymbol{H}_{0}{ }^{\prime}, \boldsymbol{H}_{\mathrm{o}}{ }^{\prime \prime}$ related to those of $\boldsymbol{E}_{0}{ }^{\prime}, \boldsymbol{E}_{\mathrm{o}}{ }^{\prime \prime}$, and the material parameters?

2 pts e) Write an expression for the Poynting vector $\boldsymbol{S}(\boldsymbol{r}, t)$ of the plane-wave in terms of $\hat{\boldsymbol{k}}, \boldsymbol{E}_{0}{ }^{\prime}, \boldsymbol{E}_{0}{ }^{\prime \prime}, \omega$, $\varepsilon(\omega), \mu(\omega), c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$, and $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$. Specify the direction of $\boldsymbol{S}(r, t)$ in 3D space.

Problem 4. The scalar and vector potentials of a plane-wave residing in an isotropic, homogeneous, linear medium devoid of free charges and free currents [i.e., $\rho_{\text {free }}(\boldsymbol{r}, t)=0$ and $\boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)=0$] are given by

$$
\begin{aligned}
& \psi(\boldsymbol{r}, t)=\operatorname{Re}\left\{\psi_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\} \\
& \boldsymbol{A}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\boldsymbol{A}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\}
\end{aligned}
$$

The medium is specified by its dielectric permittivity $\varepsilon(\omega)$ and magnetic permeability $\mu(\omega)$, both of which are real-valued and positive at the frequency of interest, ω.
$1 \mathrm{pt} \quad$ a) Find the E-field of the plane-wave in terms of $\psi_{0}, \boldsymbol{A}_{0}, \boldsymbol{k}$, and ω.
1 pt b) Find the H-field of the plane-wave in terms of $\boldsymbol{A}_{0}, \boldsymbol{k}, \omega$, and the material parameters.
2 pts c) Under what circumstances will the fields obtained in (a) and (b) above satisfy all four equations of Maxwell?
1 pt d) Do the scalar and vector potentials specified in this problem satisfy the Lorenz gauge?

