Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1. A monochromatic, *homogeneous* plane-wave propagates in free space along the direction \hat{k} of its real-valued *k*-vector. The electric and magnetic fields are given by

$$\boldsymbol{E}(\boldsymbol{r},t) = \operatorname{Re} \{ \boldsymbol{E}_{o} \exp[i(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t)] \},\$$

 $\boldsymbol{H}(\boldsymbol{r},t) = \operatorname{Re} \{ \boldsymbol{H}_{o} \exp[\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t)] \}.$

In general, E_0 and H_0 are complex-valued.

1 pt a) When is the plane-wave linearly-polarized?

1 pt b) When is the plane-wave circularly-polarized?

1 pt c) What is the relation between k and ω ?

- 1 pt d) What is the relation between k and the real and imaginary components E_0' and E_0'' of E_0 ?
- 1 pt e) What is the relation between k and the real and imaginary components H_0' and H_0'' of H_0 ?
- 1 pt f) How is H_0 related to k and E_0 ? How are the magnitudes of H_0', H_0'' related to those of E_0', E_0'' ?
- 2 pts g) Write an expression for the Poynting vector $S(\mathbf{r},t)$ of the plane-wave in terms of \mathbf{k} , $\mathbf{E}_{o}', \mathbf{E}_{o}'', \omega$, $c=1/\sqrt{\mu_{o}\varepsilon_{o}}$ and $Z_{o}=\sqrt{\mu_{o}/\varepsilon_{o}}$. In what direction does the energy propagate in 3D space?

Problem 2. An *evanescent*, monochromatic, plane-wave resides in the region above (and also below) a single-mode dielectric slab waveguide, as shown. The electromagnetic fields of the evanescent wave in the half-space z>0 are given by

$$\boldsymbol{E}(\boldsymbol{r},t) = \operatorname{Re}\{\boldsymbol{E}_{o} \exp[i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)]\},\$$

$$\boldsymbol{H}(\boldsymbol{r},t) = \operatorname{Re} \{ \boldsymbol{H}_{o} \exp[i(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t)] \}.$$

In this problem $\mathbf{k} = k_x \hat{\mathbf{x}} + i k_z \hat{\mathbf{z}}$, $\mathbf{E}_o = E_{xo} \hat{\mathbf{x}} + i E_{zo} \hat{\mathbf{z}}$, and $\mathbf{H}_o = i H_{yo} \hat{\mathbf{y}}$, with k_x , k_z , E_{xo} , E_{zo} , and H_{yo} all real-valued.

- 1 pt a) What is the relation among k_x , k_z , and ω/c ?
- 1 pt b) How are k_x , k_z , E_{xo} and E_{zo} related?
- 2 pts c) How is H_{yo} related to k_x, ω, c, Z_o and E_{xo} ?
- 2 pts d) Write an expression for the time-averaged Poynting vector $\langle S(\mathbf{r},t) \rangle$ in terms of k_x, ω , c, Z_0 and E_{x0} . In what direction does the evanescent-field's energy flow?

Problem 3. A monochromatic, *homogeneous*, plane-wave propagates along the direction of its real-valued *k*-vector within an isotropic, homogeneous, linear medium specified by its dielectric permittivity $\varepsilon(\omega)$ and magnetic permeability $\mu(\omega)$. Both $\varepsilon(\omega)$ and $\mu(\omega)$ are real and positive at the frequency of interest, ω . The electric and magnetic fields are $E(\mathbf{r},t) = \text{Re}\{E_0 \exp[i(\mathbf{k}\cdot\mathbf{r}-\omega t)]\}$ and $H(\mathbf{r},t) = \text{Re}\{H_0 \exp[i(\mathbf{k}\cdot\mathbf{r}-\omega t)]\}$, where, in general, E_0 and H_0 are complex-valued.

- 1 pt a) What is the relation between k, ω , c, and the material parameters?
- 1 pt b) What is the relation between k and the real and imaginary components E_0' and E_0'' of E_0 ?
- 1 pt c) What is the relation between k and the real and imaginary components H_0' and H_0'' of H_0 ?
- 1 pt d) How is H_0 related to k, E_0 , and the material parameters? How are the magnitudes of H_0' , H_0'' related to those of E_0' , E_0'' , and the material parameters?
- 2 pts e) Write an expression for the Poynting vector $S(\mathbf{r},t)$ of the plane-wave in terms of $\hat{\mathbf{k}}$, $\mathbf{E}_{o}', \mathbf{E}_{o}'', \omega$, $\varepsilon(\omega), \mu(\omega), c=1/\sqrt{\mu_{o}\varepsilon_{o}}$, and $Z_{o}=\sqrt{\mu_{o}/\varepsilon_{o}}$. Specify the direction of $S(\mathbf{r},t)$ in 3D space.

Problem 4. The scalar and vector potentials of a plane-wave residing in an isotropic, homogeneous, linear medium devoid of free charges and free currents [i.e., $P_{\text{free}}(\mathbf{r},t)=0$ and $J_{\text{free}}(\mathbf{r},t)=0$] are given by

$$\psi(\mathbf{r},t) = \operatorname{Re} \{ \psi_{o} \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)] \},\$$
$$A(\mathbf{r},t) = \operatorname{Re} \{ A_{o} \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)] \}.$$

The medium is specified by its dielectric permittivity $\varepsilon(\omega)$ and magnetic permeability $\mu(\omega)$, both of which are real-valued and positive at the frequency of interest, ω .

- 1 pt a) Find the *E*-field of the plane-wave in terms of ψ_0 , A_0 , k, and ω .
- 1 pt b) Find the *H*-field of the plane-wave in terms of A_0 , k, ω , and the material parameters.
- 2 pts c) Under what circumstances will the fields obtained in (a) and (b) above satisfy all four equations of Maxwell?
- 1 pt d) Do the scalar and vector potentials specified in this problem satisfy the Lorenz gauge?