Please write your name and ID number on all the pages, then staple them together.

 Answer all the questions.
Note: Bold symbols represent vectors and vector fields.

1. The vector and scalar potentials $\boldsymbol{A}(\boldsymbol{r}, t)$ and $\psi(\boldsymbol{r}, t)$ are obtained from the current and charge density distributions $\boldsymbol{J}(\boldsymbol{r}, t)$ and $\rho(\boldsymbol{r}, t)$ following standard procedure. Accordingly, the potential functions satisfy the Lorentz gauge $\nabla \cdot \boldsymbol{A}(\boldsymbol{r}, t)+\left(1 / c^{2}\right) \partial \psi / \partial t=0$. Let $f(\boldsymbol{r}, t)$ be an arbitrary, realvalued, scalar function defined over the relevant region of space-time, then define new potential functions $\boldsymbol{A}^{\prime}(\boldsymbol{r}, t)=\boldsymbol{A}(\boldsymbol{r}, t)+\nabla f(\boldsymbol{r}, t)$ and $\psi^{\prime}(\boldsymbol{r}, t)=\psi(\boldsymbol{r}, t)-\partial f(\boldsymbol{r}, t) / \partial t$.
d) Using approximate expressions for the Bessel functions, find the Poynting vector $\boldsymbol{S}(\rho, z, t)$ in the far-field region. where $k_{0}=\omega / c$, the scalar and vector potentials in cylindrical coordinates are

$$
\begin{aligned}
& \psi(\rho, z, t)=-\frac{\kappa I_{0}}{4 \varepsilon_{0} \omega}\left[Y_{0}\left(\sqrt{k_{0}^{2}-\kappa^{2}} \rho\right) \sin (\omega t-\kappa z)+J_{0}\left(\sqrt{k_{0}^{2}-\kappa^{2}} \rho\right) \cos (\omega t-\kappa z)\right] \\
& A(\rho, z, t)=-\frac{\mu_{0} I_{0} \hat{z}}{4}\left[Y_{0}\left(\sqrt{k_{0}^{2}-\kappa^{2}} \rho\right) \sin (\omega t-\kappa z)+J_{0}\left(\sqrt{k_{0}^{2}-\kappa^{2}} \rho\right) \cos (\omega t-\kappa z)\right]
\end{aligned}
$$

a) Use the continuity equation to find the charge distribution along the length of the wire.
b) Show that $\boldsymbol{A}(\rho, z, t)$ and $\psi(\rho, z, t)$ satisfy the Lorentz gauge.
c) Find the E - and H-fields in the region outside the wire.
3. In empty free space where $\rho_{\text {free }}=0, \boldsymbol{J}_{\text {free }}=0, \boldsymbol{P}=0, \boldsymbol{M}=0$, a plane-wave has potential functions $\boldsymbol{A}(\boldsymbol{r}, t)=\boldsymbol{A}_{0} \exp \left[\mathrm{i}\left(k_{0} \boldsymbol{\sigma} \cdot \boldsymbol{r}-\omega t\right)\right]$ and $\psi(\boldsymbol{r}, t)=\psi_{\mathrm{o}} \exp \left[\mathrm{i}\left(k_{0} \boldsymbol{\sigma} \cdot \boldsymbol{r}-\omega t\right)\right]$. Here $k_{0}=\omega / \boldsymbol{c}, \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}=1$, and the potentials satisfy the Lorentz gauge $\nabla \cdot \boldsymbol{A}(\boldsymbol{r}, t)+\left(1 / c^{2}\right) \partial \psi / \partial t=0$.

2 pts
a) Show that the magnetic field $\boldsymbol{B}(\boldsymbol{r}, t)$ derived from the new vector potential $\boldsymbol{A}^{\prime}(\boldsymbol{r}, t)$ is the same as that obtained from the old potential $\boldsymbol{A}(\boldsymbol{r}, t)$.
b) Show that the electric field $\boldsymbol{E}(\boldsymbol{r}, t)$ derived from the new potentials $\boldsymbol{A}^{\prime}(\boldsymbol{r}, t)$ and $\psi^{\prime}(\boldsymbol{r}, t)$ is the same as that obtained from the old potentials $\boldsymbol{A}(\boldsymbol{r}, t)$ and $\psi(\boldsymbol{r}, t)$.
c) What restrictions should one impose on $f(\boldsymbol{r}, t)$ to ensure that the new potentials also satisfy the Lorentz gauge?
d) Under what circumstances will the new potentials satisfy the Coulomb gauge $\nabla \cdot \boldsymbol{A}^{\prime}(\boldsymbol{r}, t)=0$? In Coulomb gauge, write differential equations that relate $\psi^{\prime}(\boldsymbol{r}, t)$ and $\boldsymbol{A}^{\prime}(\boldsymbol{r}, t)$ to $\rho(\boldsymbol{r}, t)$ and $\boldsymbol{J}(\boldsymbol{r}, t)$.
2. An infinitely-long thin wire carries a current $I(z, t)=I_{0} \sin (\omega t-\kappa z)$ along the z-axis. For $0<\kappa<k_{0}$,
a) What constraint does the Lorentz gauge impose on $\boldsymbol{A}_{0}, \psi_{0}$, and $\boldsymbol{\sigma}$?
b) Derive expressions for the plane-wave's E-field and H-field in terms of the defining parameters of the potential functions.
c) Show that the E - and H-fields obtained in part (b) satisfy all four Maxwell's equations.
4. A homogeneous plane-wave undergoes total internal reflection within a glass prism of refractive index $n=n_{0}$, as shown. The resulting evanescent plane-wave in the free-space region beyond the prism (i.e., $x \geq 0$) has the following E - and H-fields:

$$
\begin{aligned}
& \boldsymbol{E}(\boldsymbol{r}, t)=\boldsymbol{E}_{0} \exp \left[\mathrm{i}\left(k_{0} \boldsymbol{\sigma} \cdot \boldsymbol{r}-\omega t\right)\right], \\
& \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{H}_{0} \exp \left[\mathrm{i}\left(k_{0} \boldsymbol{\sigma} \cdot \boldsymbol{r}-\omega t\right)\right] .
\end{aligned}
$$

Let $\boldsymbol{\sigma}=\mathrm{i} \sigma_{x} \hat{\boldsymbol{x}}+\sigma_{z} \hat{\mathbf{z}}$, while $\boldsymbol{E}_{0}=E_{x 0} \hat{\boldsymbol{x}}+E_{y 0} \hat{\boldsymbol{y}}+E_{z 0} \hat{\boldsymbol{z}}$ and $\boldsymbol{H}_{0}=H_{x 0} \hat{\boldsymbol{x}}+H_{y 0} \hat{\boldsymbol{y}}+H_{z 0} \hat{\boldsymbol{z}}$. In general, σ_{x} and σ_{z} are realvalued, while the components of $\boldsymbol{E}_{\mathrm{o}}$ and $\boldsymbol{H}_{\mathrm{o}}$ are complex.
$1 \mathrm{pt} \quad$ a) What is the relationship between σ_{x} and σ_{z} ?
1 pt b) What does Maxwell's first equation say about the relation between $E_{x 0}$ and $E_{\text {zo }}$?
1 pt c) What does Maxwell's fourth equation say about the
 relation between $H_{x 0}$ and $H_{z o}$?

2 pts d) What is the relation between $\left(E_{x 0}, E_{y 0}, E_{z 0}\right)$ and $\left(H_{x 0}, H_{y 0}, H_{z 0}\right)$ based on Maxwell's third equation?
$1 \mathrm{pt} \quad$ e) If $E_{\mathrm{zo}}=0$, which components of $\boldsymbol{E}_{\mathrm{o}}$ and $\boldsymbol{H}_{\mathrm{o}}$ will vanish as well?
1 pt f) If $H_{z 0}=0$, which components of $\boldsymbol{E}_{\mathrm{o}}$ and $\boldsymbol{H}_{\mathrm{o}}$ will vanish as well?

