Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

5 pts 1. Consider a region of free-space containing the static (i.e., time-independent) electric and magnetic fields $\boldsymbol{E}(\boldsymbol{r})$ and $\boldsymbol{H}(\boldsymbol{r})$, respectively. The region may contain stationary charges and timeindependent currents, but the current density $\boldsymbol{J}(\boldsymbol{r})$, where present, is orthogonal to the local E field, that is, $\boldsymbol{E}(\boldsymbol{r}) \cdot \boldsymbol{J}(\boldsymbol{r})=0$. Prove that, within this region of space, $\nabla \cdot \boldsymbol{S}(\boldsymbol{r})=0$, where $\boldsymbol{S}(\boldsymbol{r})=\boldsymbol{E}(\boldsymbol{r}) \times \boldsymbol{H}(\boldsymbol{r})$ is the Poynting vector distribution throughout the region.

$$
\text { Hint: } \nabla \cdot(\boldsymbol{A} \times \boldsymbol{B})=\boldsymbol{B} \cdot(\nabla \times \boldsymbol{A})-\boldsymbol{A} \cdot(\nabla \times \boldsymbol{B})
$$

2. An infinitely-long, thin solenoid of radius R_{1} carries a uniform, timeindependent surface current density $J_{s 0} \hat{\phi}$. Inside the solenoid and sharing the axis with it, is another infinitely-long, thin, hollow cylinder of radius R_{2}. The surface of the small cylinder is uniformly charged with a time-independent charge density $\sigma_{\text {so }}$. (This will induce negative charges on the inside wall of the solenoid, but the outer wall of the solenoid remains free of charge.)

5 pts
a) What is the magnetic field distribution $\boldsymbol{H}(\boldsymbol{r})$ throughout the entire space?
b) What is the electric field distribution $\boldsymbol{E}(\boldsymbol{r})$ throughout the entire space?
c) Find the distribution of the Poynting vector $\boldsymbol{S}(\boldsymbol{r})$ inside and outside the cylinders.
d) Determine the divergence of $\boldsymbol{S}(\boldsymbol{r})$, and show that the integral of $\boldsymbol{S}(\boldsymbol{r})$ over any closed surface in this system is zero.

3. The hollow, rectangular core of a perfect metallic conductor is used as a waveguide. The core's dimensions are $a \times b$, as shown, and the propagation direction is along the z-axis. The guided mode is the superposition of four homogeneous planewaves of the form $\boldsymbol{E}_{0} \exp \left[\mathrm{i}\left(k_{0} \boldsymbol{\sigma} \cdot \boldsymbol{r}-\omega t\right)\right]$, specified as follows:

$$
\begin{aligned}
& \sigma_{1}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right), \quad \boldsymbol{E}_{01}=\left(E_{0 x}, E_{o y}, E_{o z}\right), \quad \boldsymbol{H}_{01}=\left(H_{o x}, H_{0 y}, H_{0 z}\right) . \\
& \sigma_{2}=\left(-\sigma_{x}, \sigma_{y}, \sigma_{z}\right), \quad \boldsymbol{E}_{02}=\left(-E_{0 x}, E_{\mathrm{oy}}, E_{0 z}\right), \quad \boldsymbol{H}_{02}=\left(H_{0 x},-H_{0 y},-H_{0 z}\right) . \\
& \sigma_{3}=\left(\sigma_{x},-\sigma_{y}, \sigma_{z}\right), \quad \boldsymbol{E}_{03}=\left(E_{0 x},-E_{o y}, E_{0 z}\right), \quad \boldsymbol{H}_{03}=\left(-H_{0 x}, H_{0 y},-H_{0 z}\right) . \\
& \sigma_{4}=\left(-\sigma_{x},-\sigma_{y}, \sigma_{z}\right), \quad \boldsymbol{E}_{04}=\left(-E_{0 x},-E_{o y}, E_{0 z}\right), \quad \boldsymbol{H}_{04}=\left(-H_{0 x},-H_{0 y}, H_{0 z}\right) .
\end{aligned}
$$

The signs of the various components are chosen such that the constraints $\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}=1, \boldsymbol{\sigma} \cdot \boldsymbol{E}_{0}=0, \boldsymbol{\sigma} \cdot \boldsymbol{H}_{0}=0$, and $Z_{0} \boldsymbol{H}_{0}=\boldsymbol{\sigma} \times \boldsymbol{E}_{0}$,
 if satisfied for one plane-wave, will be satisfied for all.
a) Determine the values of σ_{x}, σ_{y} as functions of a, b, and λ_{0}, so that the tangential E-field and perpendicular H-field components vanish everywhere on the inner walls of the waveguide.
b) Find the distributions of surface charge density σ_{s} and surface current density \boldsymbol{J}_{s} on the inner walls, and show that the conservation of charge equation, $\nabla \cdot \boldsymbol{J}_{s}+\partial \sigma_{s} / \partial t=0$, is satisfied.

