Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

5 pts 1. Consider a region of free-space containing the static (i.e., time-independent) electric and magnetic fields E(r) and H(r), respectively. The region may contain stationary charges and time-independent currents, but the current density J(r), where present, is orthogonal to the local *E*-field, that is, $E(r) \cdot J(r) = 0$. Prove that, within this region of space, $\nabla \cdot S(r) = 0$, where $S(r) = E(r) \times H(r)$ is the Poynting vector distribution throughout the region.

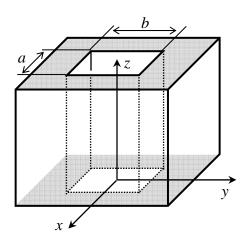
Hint: $\nabla \cdot (A \times B) = B \cdot (\nabla \times A) - A \cdot (\nabla \times B)$

2. An infinitely-long, thin solenoid of radius R_1 carries a uniform, timeindependent surface current density $J_{so}\phi$. Inside the solenoid and sharing the axis with it, is another infinitely-long, thin, hollow cylinder of radius R_2 . The surface of the small cylinder is uniformly charged with a time-independent charge density σ_{so} . (This will induce negative charges on the inside wall of the solenoid, but the outer wall of the solenoid remains free of charge.)

- 2 pts a) What is the magnetic field distribution H(r) throughout the entire space?
- 3 pts b) What is the electric field distribution E(r) throughout the entire space?
- 3 pts c) Find the distribution of the Poynting vector S(r) inside and outside the cylinders.
- 2 pts d) Determine the divergence of S(r), and show that the integral of S(r) over any closed surface in this system is zero.

3. The hollow, rectangular core of a perfect metallic conductor is used as a waveguide. The core's dimensions are $a \times b$, as shown, and the propagation direction is along the *z*-axis. The guided mode is the superposition of four **homogeneous** planewaves of the form $E_0 \exp[i(k_0\sigma \cdot r - \omega t)]$, specified as follows:

The signs of the various components are chosen such that the constraints $\boldsymbol{\sigma} \cdot \boldsymbol{\sigma} = 1$, $\boldsymbol{\sigma} \cdot \boldsymbol{E}_{o} = 0$, $\boldsymbol{\sigma} \cdot \boldsymbol{H}_{o} = 0$, and $Z_{o}\boldsymbol{H}_{o} = \boldsymbol{\sigma} \times \boldsymbol{E}_{o}$, if satisfied for one plane-wave, will be satisfied for all.



- 5 pts a) Determine the values of σ_x , σ_y as functions of *a*, *b*, and λ_o , so that the tangential *E*-field and perpendicular *H*-field components vanish everywhere on the inner walls of the waveguide.
- 5 pts b) Find the distributions of surface charge density σ_s and surface current density J_s on the inner walls, and show that the conservation of charge equation, $\nabla \cdot J_s + \partial \sigma_s / \partial t = 0$, is satisfied.

