Please write your name and ID number on all the pages, then staple the pages together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

c) Use the relation $\boldsymbol{E}(\boldsymbol{r}, t)=-\nabla \psi(\boldsymbol{r}, t)-\partial \boldsymbol{A}(\boldsymbol{r}, t) / \partial t$ to find the electric-field distribution $\boldsymbol{E}(\boldsymbol{r}, t)$ in the near-field region.
3) A homogeneous plane wave propagates in free space along the z-axis. The oscillation frequency is $\omega=2 \pi f$, the wavelength is $\lambda_{o}=c / f$, the propagation constant is $k_{\mathrm{o}}=2 \pi / \lambda_{\mathrm{o}}$, the speed of light is c, and the impedance of the free space is Z_{0}. The only restrictions on the fields are those imposed by Maxwell's equations.
$(2 \mathrm{pts}) \quad$ a) Write expressions for the propagation vector σ, the E field amplitude $\boldsymbol{E}_{0}=E_{x 0} \hat{\boldsymbol{x}}+E_{y 0} \hat{\boldsymbol{y}}+E_{z 0} \hat{\boldsymbol{z}}$, and the H-field amplitude $\boldsymbol{H}_{\mathrm{o}}=H_{x 0} \hat{\boldsymbol{x}}+H_{y \mathrm{o}} \hat{\boldsymbol{y}}+H_{z o} \hat{z}$, consistent with Maxwell's equations.
$(1 \mathrm{pt}) \quad \mathrm{b})$ What conditions should $E_{x \mathrm{o}}$ and $E_{y \mathrm{o}}$ satisfy for the plane-wave to be linearly polarized?
$(1 \mathrm{pt}) \quad$ c) What conditions should $E_{x 0}$ and $E_{y 0}$ satisfy for the plane-wave to be circularly polarized?
$(2 \mathrm{pts})$ d) Let $E_{x 0}=\left|E_{x 0}\right| \exp \left(\mathrm{i} \phi_{x 0}\right)$ and $E_{y 0}=\left|E_{y 0}\right| \exp \left(\mathrm{i} \phi_{y \mathrm{o}}\right)$. Assuming $\left|E_{x 0}\right|>\left|E_{y 0}\right|$ and $\phi_{x 0}-\phi_{y 0}=90^{\circ}$, what is the polarization ellipticity η of the plane-wave?
(2 pts) e) Starting from the formula $<\boldsymbol{S}(\boldsymbol{r}, t)>=1 / 2 \operatorname{Re}\left(\boldsymbol{E} \times \boldsymbol{H}^{*}\right)$ and showing every step of the calculation, derive an expression for the time-averaged Poynting vector $\left\langle\boldsymbol{S}(\boldsymbol{r}, t)>\right.$ in terms of $E_{x 0}$ and $E_{y 0}$.
4) Two homogeneous plane-waves propagate in free space along the directions $\sigma_{1}=\sin \theta \hat{y}+\cos \theta \hat{z}$ and $\sigma_{2}=-\sin \theta \hat{\boldsymbol{y}}+\cos \theta \hat{\boldsymbol{z}}$, as shown. Both plane-waves are linearly polarized along the x-axis with amplitudes $E_{x 1}=\left|E_{x 1}\right| \exp \left(\mathrm{i} \phi_{x 1}\right)$ and $E_{x 2}=\left|E_{x 2}\right| \exp \left(\mathrm{i} \phi_{x 2}\right)$.
$\left(\begin{array}{l}2 \mathrm{pts}) \quad \text { a) For each plane-wave write expressions for the electric }\end{array}\right.$ and magnetic fields $\boldsymbol{E}(\boldsymbol{r}, t)$ and $\boldsymbol{H}(\boldsymbol{r}, t)$ in terms of the corresponding E-field amplitudes, the orientation angle θ, the propagation constant k_{o}, the speed of light c, and the impedance Z_{0} of the free space.

$(3 \mathrm{pts}) \quad$ b) Compute the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ for the superposition of the two planewaves. Explain how interference between the two plane-waves affects the behavior of $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$.

