Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

8 Pts
Problem 1) A uniformly-magnetized sphere of radius R and magnetization $M_{0} \hat{z}$ is shown in the figure. Using the conceptual definitions of the divergence and curl operators, find the density of bound magnetic charge $\rho_{\text {bound }}^{(m)}$ and also the density of bound electric current $\boldsymbol{J}_{\text {bound }}^{(e)}$ on the surface of the sphere. (Recall that the proper symbols for surface charge and current densities are σ_{s} and $\boldsymbol{J}_{s .}$.)

Problem 2) A monochromatic plane-wave of frequency ω traveling in free space is reflected at normal incidence from the flat surface of a perfect conductor. Denoting the speed of light in vacuum by $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$ and the impedance of free space by $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$, the incident and reflected E - and H-fields are given by

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{E}^{(\text {inc) })}(\boldsymbol{r}, t)=E_{0} \hat{\boldsymbol{x}} \cos [(\omega / c) z-\omega t], \\
\boldsymbol{H}^{(\text {inc) })}(\boldsymbol{r}, t)=\left(E_{0} / Z_{0}\right) \hat{\boldsymbol{y}} \cos [(\omega / c) z-\omega t] .
\end{array}\right. \\
& \left\{\begin{array}{l}
\boldsymbol{E}^{(\text {ref })}(\boldsymbol{r}, t)=-E_{0} \hat{\boldsymbol{x}} \cos [(\omega / c) z+\omega t], \\
\boldsymbol{H}^{(\text {ref })}(\boldsymbol{r}, t)=\left(E_{0} / Z_{0}\right) \hat{\boldsymbol{y}} \cos [(\omega / c) z+\omega t] .
\end{array}\right.
\end{aligned}
$$

2 Pts
a) Write expressions for the total E-field and total H-field amplitudes in the half-space $z \leq 0$.

Hint: $\cos a+\cos b=2 \cos [(a+b) / 2] \cos [(a-b) / 2] ; \quad \cos a-\cos b=-2 \sin [(a+b) / 2] \sin [(a-b) / 2]$.
b) Identify locations along the z-axis where the E-field is exactly equal to zero, and also locations where the H-field is exactly zero.
c) Determine the local energy densities of the E - and H-fields in the half-space $z \leq 0$.
d) Find the total Poynting vector $\boldsymbol{S}(\boldsymbol{r}, t)$ in the half-space $z \leq 0$, and explain the behavior of the electromagnetic energy as a function of time by analyzing the time-dependence of the Poynting vector in relation to the local energy densities of the E - and H-fields.
Hint: $2 \sin (a) \cos (a)=\sin (2 a)$.

Problem 3) A monochromatic plane-wave of frequency ω traveling in free space is reflected from a perfectly-conducting, flat mirror surface at an oblique incidence angle θ. In the half-space $z \leq 0$, the electric and magnetic fields of the incident and reflected waves are given by

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{E}^{(\text {inc) })}(\boldsymbol{r}, t)=E_{0}(\cos \theta \hat{\boldsymbol{x}}-\sin \theta \hat{\mathbf{z}}) \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x+(\cos \theta) z-c t]\}, \\
\boldsymbol{H}^{(\mathrm{inc})}(\boldsymbol{r}, t)=\left(E_{\mathrm{o}} / Z_{\mathrm{o}}\right) \hat{\boldsymbol{y}} \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x+(\cos \theta) z-c t]\} .
\end{array}\right. \\
& \left\{\begin{array}{l}
\boldsymbol{E}^{(\mathrm{ref})}(\boldsymbol{r}, t)=-E_{0}(\cos \theta \hat{\boldsymbol{x}}+\sin \theta \hat{\mathbf{z}}) \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-(\cos \theta) z-c t]\}, \\
\boldsymbol{H}^{(\mathrm{ref})}(\boldsymbol{r}, t)=\left(E_{0} / Z_{0}\right) \hat{\boldsymbol{y}} \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-(\cos \theta) z-c t]\} .
\end{array}\right.
\end{aligned}
$$

2 Pts

2 Pts
a) Find the tangential component of the E-field at the mirror surface, and verify that it satisfies the relevant boundary condition.
b) Find the tangential component of the H-field at the mirror surface, and determine the current density $\boldsymbol{J}_{5}(x, y, z=0, t)$ that must exist on the surface in order to satisfy the relevant boundary condition.
c) Find the perpendicular component of the E-field at the mirror surface, and determine the charge density $\sigma_{s}(x, y, z=0, t)$ that must exist on the surface in order to satisfy the relevant boundary condition.
d) Show that the surface charge and current densities obtained in parts (b) and (c) satisfy the continuity equation $\nabla \cdot \boldsymbol{J}_{s}+\partial \sigma_{s} / \partial t=0$.

