Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

1. A non-conducting (e.g., plastic) disk of radius *R* and negligible thickness is uniformly charged with a constant surface charge density σ_s . In the spherical coordinate system shown in the figure, the scalar potential is $\psi(\rho, \theta, \phi)$.

- 2 pts a) Given the symmetry of the system, without any calculations, what can one say about $\psi(\rho, \theta, \phi)$?
- 2 pts b) Considering the form of the scalar potential determined in part (a) above, what can one say about the various *E*-field components, $E_{\rho}(\rho, \theta, \phi)\hat{\rho} + E_{\theta}(\rho, \theta, \phi)\hat{\theta} + E_{\phi}(\rho, \theta, \phi)\hat{\phi}$?

- 2 pts d) What is the magnitude of E_{θ} at a point *A* slightly above the disk, i.e., $(\rho < R, \theta = \frac{1}{2}\pi^{-}, \phi)$, or at a point *B* slightly below the disk, i.e., $(\rho < R, \theta = \frac{1}{2}\pi^{+}, \phi)$?
- 1 pt e) Without any calculations, what can one say about E_{ρ} at the points A and B mentioned in part (d) above?

2. The disk described in Problem 1 now rotates around the *z*-axis at a constant angular velocity $\omega = 2\pi f$. As the disk is non-conducting, its charges are immobile and, therefore, its surface charge density σ_s remains the same as that of the stationary disk.

- 1 pt a) Is this an electro-static problem, a magneto-static problem, or both? Are the scalar potential ψ and the *E*-field distribution any different than those determined in Problem 1?
- 1 pt b) What is the surface current density $J_s(\rho)$ of the disk?
- 1 pt c) Is the continuity equation $\nabla \cdot \mathbf{J}_s + \partial \sigma_s / \partial t = 0$ satisfied?
- 1 pt d) Expressing the vector potential in cylindrical coordinates as $A(\rho, \phi, z)$, given the symmetry of the problem, what can one say about $A(\rho, \phi, z)$ without any calculations?
- 1 pt e) Considering the form of the vector potential determined in part (d) above, what can one say about the various *H*-field components, $H_{\rho}(\rho, \phi, z) \stackrel{\wedge}{\rho} + H_{\phi}(\rho, \phi, z) \stackrel{\wedge}{\phi} + H_{z}(\rho, \phi, z) \stackrel{\wedge}{z}$?
- 1 pt f) At an arbitrary point located within the *xy*-plane but outside the disk, i.e., $(\rho > R, \phi, z=0)$, which components of the *H*-field, if any, are equal to zero?

- 1 pt g) What is the magnitude of H_{ρ} at a point *A* slightly above the disk, i.e., $(\rho < R, \phi, z=0^+)$, or at a point *B* slightly below the disk, i.e., $(\rho < R, \phi, z=0^-)$?
- 1 pt h) Without any calculations, what can one say about H_z at the points A and B mentioned in part (g) above?
- 1 pt i) What is the magnetic dipole moment *m* of the rotating disk?

3. A high-conductivity metallic rod of length *L* and mass *M* moves with constant velocity v_0 over an open circuit, as shown. In addition to a light bulb (resistance = *R*), the circuit contains a switch, which closes at t=0. Crossing the circuit is a uniform, time-independent magnetic field B_0 , perpendicular to the plane of the circuit at each and every point.

2 pts a) Describe (in words) what happens to the light bulb and the rod after the switch is closed, i.e., at t = 0 and beyond.

- 2 pts b) The rod slows down after the switch is closed. Denoting its velocity by v(t) for $t \ge 0$, write expressions for the voltage V(t) and current I(t) of the light bulb in terms of the length *L* of the rod, its velocity v(t), the magnetic field strength B_0 , and the resistance *R*.
- 2 pts c) Using the Lorentz law of force, $F = q(E + V \times B)$, express the braking force on the rod in terms of B_0 , L, and the current I(t) flowing in the rod. Using Newton's law of motion, F(t) = M dv(t)/dt, and the relation between v(t) and I(t) found in part (b), determine the rod's velocity v(t) for $t \ge 0$. [Note: the velocity of the rod immediately after the closing of the switch is $v(t = 0^+) = v_0$].
- 2 pts d) Considering that the instantaneous power delivered to the light bulb is P(t) = V(t)I(t), show that, between t = 0 and $t = \infty$ (when the rod comes to a halt), the total energy consumed by the light bulb is equal to the rod's initial kinetic energy $\frac{1}{2}Mv_0^2$.