Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

1. A non-conducting (e.g., plastic) disk of radius R and negligible thickness is uniformly charged with a constant surface charge density σ_{s}. In the spherical coordinate system shown in the figure, the scalar potential is $\psi(\rho, \theta, \phi)$.
2 pts a) Given the symmetry of the system, without any calculations, what can one say about $\psi(\rho, \theta, \phi)$?
2 pts b) Considering the form of the scalar potential determined in part (a) above, what can one say about the various E-field components, $E_{\rho}(\rho, \theta, \phi) \hat{\boldsymbol{\rho}}+E_{\theta}(\rho, \theta, \phi) \hat{\boldsymbol{\theta}}+E_{\phi}(\rho, \theta, \phi) \hat{\boldsymbol{\phi}}$?
1 pt c) At an arbitrary point located within the $x y$-plane but outside the
 disk, i.e., $(\rho>R, \theta=1 / 2 \pi, \phi)$, which components of the E-field, if any, are equal to zero?
2 pts d) What is the magnitude of E_{θ} at a point A slightly above the disk, i.e., $\left(\rho<R, \theta=1 / 2 \pi^{-}, \phi\right)$, or at a point B slightly below the disk, i.e., ($\rho<R, \theta=1 / 2 \pi^{+}, \phi$) ?

1 pt e) Without any calculations, what can one say about E_{ρ} at the points A and B mentioned in part (d) above?
2. The disk described in Problem 1 now rotates around the z-axis at a constant angular velocity $\omega=2 \pi f$. As the disk is nonconducting, its charges are immobile and, therefore, its surface charge density σ_{s} remains the same as that of the stationary disk.

1 pt a) Is this an electro-static problem, a magneto-static problem, or both? Are the scalar potential ψ and the E-field distribution any different than those determined in Problem 1?

1 pt b) What is the surface current density $\boldsymbol{J}_{s}(\rho)$ of the disk?
c) Is the continuity equation $\nabla \cdot \boldsymbol{J}_{s}+\partial \sigma_{s} / \partial t=0$ satisfied?

1 pt d) Expressing the vector potential in cylindrical coordinates as $\boldsymbol{A}(\rho, \phi, z)$, given the symmetry of the problem, what can one say about $\boldsymbol{A}(\rho, \phi, z)$ without any calculations?
$1 \mathrm{pt} \quad$ e) Considering the form of the vector potential determined in part (d) above, what can one say about the various H-field components, $H_{\rho}(\rho, \phi, z) \hat{\rho}+H_{\phi}(\rho, \phi, z) \hat{\boldsymbol{\phi}}+H_{z}(\rho, \phi, z) \hat{\mathbf{z}}$?
1 pt f) At an arbitrary point located within the $x y$-plane but outside the disk, i.e., $(\rho>R, \phi, z=0)$, which components of the H-field, if any, are equal to zero?
$1 \mathrm{pt} \mathrm{g})$ What is the magnitude of H_{ρ} at a point A slightly above the disk, i.e., $\left(\rho<R, \phi, z=0^{+}\right)$, or at a point B slightly below the disk, i.e., ($\rho<R, \phi, z=0^{-}$)?
1 pt h) Without any calculations, what can one say about H_{z} at the points A and B mentioned in part (g) above?

1 pt i) What is the magnetic dipole moment \boldsymbol{m} of the rotating disk?
3. A high-conductivity metallic rod of length L and mass M moves with constant velocity \boldsymbol{v}_{0} over an open circuit, as shown. In addition to a light bulb (resistance $=R$), the circuit contains a switch, which closes at $t=0$. Crossing the circuit is a uniform, time-independent magnetic field \boldsymbol{B}_{0}, perpendicular to the plane of the circuit at each and every point.
2 pts a) Describe (in words) what happens to the light
 bulb and the rod after the switch is closed, i.e., at $t=0$ and beyond.

2 pts b) The rod slows down after the switch is closed. Denoting its velocity by $\boldsymbol{v}(t)$ for $t \geq 0$, write expressions for the voltage $V(t)$ and current $I(t)$ of the light bulb in terms of the length L of the rod, its velocity $\boldsymbol{v}(t)$, the magnetic field strength B_{0}, and the resistance R.
c) Using the Lorentz law of force, $\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{V} \times \boldsymbol{B})$, express the braking force on the rod in terms of B_{0}, L, and the current $I(t)$ flowing in the rod. Using Newton's law of motion, $\boldsymbol{F}(t)=M \mathrm{~d}(t) / \mathrm{d} t$, and the relation between $\boldsymbol{v}(t)$ and $I(t)$ found in part (b), determine the rod's velocity $\boldsymbol{v}(t)$ for $t \geq 0$. [Note: the velocity of the rod immediately after the closing of the switch is $\left.\boldsymbol{v}\left(t=0^{+}\right)=\boldsymbol{v}_{0}\right]$.
d) Considering that the instantaneous power delivered to the light bulb is $P(t)=V(t) I(t)$, show that, between $t=0$ and $t=\infty$ (when the rod comes to a halt), the total energy consumed by the light bulb is equal to the rod's initial kinetic energy $1 / 2 M v_{0}{ }^{2}$.

