Please write your name and ID number on all the pages, then staple the pages together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

1) A pair of electric charges $\pm Q$ is placed at $(x, y, z)=(0,0, \pm d)$, as shown in Fig. 1(a).
$(2 \mathrm{pts})$ a) What is the E-field at an arbitrary point in the $x y$-plane, say, at $\boldsymbol{r}=(x, y, 0)$?
b) What is the electric potential $\psi(x, y, z=0)$ at an arbitrary point in the $x y$-plane?
(2 pts)
c) Assume the charge $-Q$ is replaced by a perfectly conducting plate whose top surface is in the $x y$-plane, as in Fig. 1(b). The plate is grounded, i.e., its potential ψ is zero. Determine the surface charge density distribution $\sigma(x, y)$ at the upper surface of the conducting plate.

(b)

Hint: In the half-space $z \geq 0$, the E-field distribution in Fig. 1(a) is the same as that in Fig. 1(b), because $\nabla^{2} \psi(x, y, z)=-\rho(x, y, z) / \varepsilon_{0}$, and also the boundary condition, $\psi(x, y, z=0)=0$, is the same in both cases.
2) A square loop of conducting wire carries a constant electric current I_{0}. Each side of the square has length a, and its surface normal \boldsymbol{N} makes an angle θ with the z-axis in the $y z$-plane, as shown. A uniform magnetic field $\boldsymbol{B}(x, y, z)=B_{0} \hat{\boldsymbol{z}}$ crosses the loop.
a) What is the magnetic dipole moment \boldsymbol{m} of the loop (both magnitude and direction)?
b) Use the Lorentz law to determine the force exerted by the B field on each side of the loop.
$(2 \mathrm{pts}) \quad$ c) What is the net force and the net torque experienced by the loop?
d) Suppose now that the field is no longer uniform, but its magnitude varies as a function of y; in other words, B_{0} must now be written as $B_{0}(y)$. Assuming that the loop is small and that the first-order term in the Taylor series expansion of $B_{0}(y)$ suffices to represent the function accurately, express the net force \boldsymbol{F} exerted on the loop as function of $a, \theta, I_{\mathrm{o}}$, and $\mathrm{d} B_{0} / \mathrm{d} y$.

3) A thin, hollow cylinder of radius R and infinite length, centered on the z-axis, carries a constant current I_{0} parallel to the z-axis, as shown. The current is uniformly distributed around the cylinder's perimeter.
$(1 \mathrm{pt})$ a) In terms of I_{o} and R, what is the surface current density \boldsymbol{J}_{s} on the cylinder surface?
b) Consider the cylinder as a collection of long, thin wires, all running parallel to the z-axis. Working in cylindrical coordinates, integrate the vector potential of the wire to find the total vector potential $\boldsymbol{A}(\boldsymbol{r})$ of the cylinder at a radial distance ρ from the z-axis. (Note: ρ could be less than or greater than R, that is, your final answer must be valid both inside and outside the cylinder.)
(2 pts)
c) Using the vector potential $\boldsymbol{A}(\boldsymbol{r})$ obtained in (b), determine the magnetic field $\boldsymbol{H}(\boldsymbol{r})$ both inside and outside the cylinder. Verify that $\boldsymbol{H}(\boldsymbol{r})$ satisfies Ampere's law as well as the boundary condition on the cylinder's surface.

Hint: $\int_{0}^{\pi} \ln \left(1-2 a \cos \phi+a^{2}\right) \mathrm{d} \phi=\left\{\begin{array}{ll}0 & a^{2} \leq 1 \\ \pi \ln \left(a^{2}\right) & a^{2}>1\end{array} \quad\right.$ [Gradshteyn \& Ryzhik, page 527, 4.224 (14)]
4) Two identical wires of radius R and infinite length are placed parallel to each other with a center-to-center spacing d. The wires carry the current $I(t)=I_{0} \sin (2 \pi f t)$ in opposite directions. (The frequency f is sufficiently small that higher-order dynamic effects may be ignored.)

$(2 \mathrm{pts})$ a) Find the magnetic field $\boldsymbol{B}(\boldsymbol{r}, t)$ in the region of space between the two wires.
$(2 \mathrm{pts}) \quad$ b) Determine the magnetic flux that crosses a rectangular area of unit length and width $(d-2 R)$ between the wires.
$(1 \mathrm{pt}) \quad$ c) What is the inductance per unit length, L, of the two-wire system?
$(2 \mathrm{pts})$ d) Use Faraday's law to determine the induced electric field $E(t)$ along the length of each wire.

