Please write your name and ID number on all pages, then staple them together. Answer all questions.

Note: Bold symbols represent vectors and vector fields.

1) An arbitrary complex function $f(t)$ is defined on the time-axis t. Define the function $F(\omega)$ in the interval $-\Omega<\omega<+\Omega$ as follows:

$$
\begin{equation*}
F(\omega)=\int_{t_{1}}^{t_{2}} f\left(t^{\prime}\right) \exp \left(-\mathrm{i} \omega t^{\prime}\right) \mathrm{d} t^{\prime} \tag{1}
\end{equation*}
$$

Assuming that $F(\omega)$ is well-behaved over the interval $-\Omega<\omega<+\Omega$, construct the function $\hat{f}(t)$ in accordance with the formula

$$
\begin{equation*}
\hat{f}(t)=(2 \pi)^{-1} \int_{-\Omega}^{\Omega} F(\omega) \exp (+\mathrm{i} \omega t) \mathrm{d} \omega \tag{2}
\end{equation*}
$$

$(4 \mathrm{pts}) \quad$ a) Substitute for $F(\omega)$ from Eq.(1) into Eq.(2), then simplify until you obtain an integral equation that relates $\hat{f}(t)$ to $f(t)$ and $\operatorname{sinc}(t)$.
[Note: $\operatorname{sinc}(t)=\sin (\pi t) /(\pi t)$.]
(4 pts) b) Show that in the limit when $\Omega \rightarrow \infty$, assuming $f(t)$ is sufficiently well-behaved, the function $\hat{f}(t)$ approaches $f(t)$ throughout the interval $t_{1}<t<t_{2}$.
$(2 \mathrm{pts}) \quad$ c) In the limit $\Omega \rightarrow \infty$, find the values of $\hat{f}(t)$ for $t<t_{1}$ and $t>t_{2}$.
2) Consider the flat interface between two isotropic, homogeneous, linear, semi-infinite media specified by their dielectric permittivities ($\varepsilon_{a}, \varepsilon_{b}$) and magnetic permeabilities $\left(\mu_{a}, \mu_{b}\right)$. Assume that both media are transparent at the frequency of interest ω, namely, their ε and μ are realvalued, either with ε, μ both >0 or ε, μ both <0. A homogeneous plane-wave propagating in the (ε_{a}, μ_{a}) medium, arrives at the interface with the $\left(\varepsilon_{b}, \mu_{b}\right)$ medium at an angle of incidence θ.
$(5 \mathrm{pts}) \quad$ a) Let the two media have equal refractive indices but differing impedances, that is, $n_{a}=n_{b}$ but $\sqrt{\mu_{a} / \varepsilon_{a}} \neq \sqrt{\mu_{b} / \varepsilon_{b}}$. Find the Fresnel reflection coefficients ρ_{p} and ρ_{s} for p - and s-polarized light at the arbitrary angle of incidence θ. Verify that $\rho_{p}=\rho_{s}$ at normal incidence.
(5 pts) b) Let the two media now have differing refractive indices but equal impedances, that is, $n_{a} \neq n_{b}$ but $\sqrt{\mu_{a} / \varepsilon_{a}}=\sqrt{\mu_{b} / \varepsilon_{b}}$. At what angle (or angles) of incidence and for which polarization states will the reflectivity be exactly zero? Explain.
3) A region of space contains arbitrary charge, current, polarization, and magnetization distributions $\rho_{\text {free }}(\boldsymbol{r}, t), \boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t), \boldsymbol{P}(\boldsymbol{r}, t)$ and $\boldsymbol{M}(\boldsymbol{r}, t)$. Consider an arbitrary surface, not necessarily flat but reasonably smooth, that cuts this medium into two parts, as shown. For a given point \boldsymbol{r}_{0} on this surface, let \boldsymbol{r}_{0}^{+}be a point slightly to one side, and $\boldsymbol{r}_{\mathrm{o}}^{-}$a point slightly to the opposite side of the surface, with the short line segment joining \boldsymbol{r}_{0}^{-}to $\boldsymbol{r}_{\mathrm{o}}^{+}$being perpendicular to the surface at \boldsymbol{r}_{0}. Also let the symbols $\|$ and \perp indicate field components that are, respectively, parallel and perpendicular to the surface in the vicinity of \boldsymbol{r}_{0}. Each of Maxwell's equations says something about the continuity or discontinuity of the various field components, e.g., the difference between $\boldsymbol{E}_{\| \mid}\left(\boldsymbol{r}_{0}^{-}, t\right)$ and $\boldsymbol{E}_{\| \mid}\left(\boldsymbol{r}_{\mathrm{o}}^{+}, t\right)$, on the two sides of the surface. These are generally known as electromagnetic boundary conditions.

$\left(\begin{array}{ll}2 & \text { pts })\end{array}\right.$ a) Comparing D-fields at \boldsymbol{r}_{o}^{-}and \boldsymbol{r}_{0}^{+}, what does Maxwell's $1^{\text {st }}$ equation say about the continuity or discontinuity of the D-field? Explain.
$(3 \mathrm{pts}) \quad$ b) Similarly, what does Maxwell's $2^{\text {nd }}$ equation say about the continuity/discontinuity of the H field across the surface? Explain.
c) What does Maxwell's $3^{\text {rd }}$ equation say about continuity/discontinuity of the E-field? Explain.
d) What does Maxwell's $4^{\text {th }}$ equation say about continuity/discontinuity of the B-field? Explain.
4) Two monochromatic, homogeneous plane-waves propagate along the x-axis in an isotropic, homogeneous, linear, transparent medium specified by its relative permeability and permittivity, $\mu(\omega)$ and $\varepsilon(\omega)$, respectively. The two plane-waves have frequencies ω_{1} and ω_{2}, with center frequency $\omega_{c}=1 / 2\left(\omega_{1}+\omega_{2}\right)$ and frequency difference $\Delta \omega=\omega_{2}-\omega_{1} \ll \omega_{c}$. Both plane-waves are linearly polarized along the y-axis, having amplitudes $E_{1} \hat{y} \cos \left(k_{1} x-\omega_{1} t\right)$ and $E_{2} \hat{y} \cos \left(k_{2} x-\omega_{2} t\right)$. The duration T of the "beat" may be taken as half the period of the envelope of the superposition waveform, that is, $T=\pi / \Delta \omega$.
(2 pts) a) Express k_{1} and k_{2} in terms of $\omega_{1}, \omega_{2}, \mu$ and ε.
b) Using the expression $\partial \mathcal{E}_{E}(\boldsymbol{r}, t) / \partial \boldsymbol{t}=\boldsymbol{E}(\boldsymbol{r}, t) \cdot \partial \boldsymbol{D}(\boldsymbol{r}, t) / \partial t$, find the electric energy density $\mathcal{E}_{E}(\boldsymbol{r}, t)$ as a function of x and t. (The constant of integration may be denoted by C_{0}, an unknown but inconsequential parameter.)
(3 pts) c) Calculate the time-average of the energy density obtained in part (b) over the duration of a single beat, that is, from $t-(\pi / \Delta \omega)$ to t.
[Your final answer must be a function of x and t. To simplify the above calculation, you may assume that $\omega_{1}=m \Delta \omega$ and $\omega_{2}=(m+1) \Delta \omega$, where m is a large, positive integer.]
$(2 \mathrm{pts}) \mathrm{d})$ At what velocity does the time-averaged electric energy density obtained in part (c) propagate along the x-axis?

Hint: $\sin a \cos a=1 / 2 \sin (2 a) ; \sin a \cos b=1 / 2 \sin (a+b)+1 / 2 \sin (a-b) ; \sin a+\sin b=2 \sin [1 / 2(a+b)] \cos [1 / 2(a-b)]$.

