Please write your name and ID number on all pages, then staple them together. Answer all questions.

Note: Bold symbols represent vectors and vector fields.

1) An arbitrary complex function f(t) is defined on the time-axis *t*. Define the function $F(\omega)$ in the interval $-\Omega < \omega < +\Omega$ as follows:

$$F(\omega) = \int_{t_1}^{t_2} f(t') \exp(-i\omega t') dt'.$$
 (1)

Assuming that $F(\omega)$ is well-behaved over the interval $-\Omega < \omega < +\Omega$, construct the function $\hat{f}(t)$ in accordance with the formula

$$\hat{f}(t) = (2\pi)^{-1} \int_{-\Omega}^{\Omega} F(\omega) \exp(+i\omega t) d\omega.$$
(2)

- (4 pts) a) Substitute for $F(\omega)$ from Eq.(1) into Eq.(2), then simplify until you obtain an integral equation that relates $\hat{f}(t)$ to f(t) and sinc(t). [Note: sinc(t) = sin(πt)/(πt).]
- (4 pts) b) Show that in the limit when $\Omega \to \infty$, assuming f(t) is sufficiently well-behaved, the function $\hat{f}(t)$ approaches f(t) throughout the interval $t_1 < t < t_2$.
- (2 pts) c) In the limit $\Omega \to \infty$, find the values of $\hat{f}(t)$ for $t < t_1$ and $t > t_2$.

2) Consider the flat interface between two isotropic, homogeneous, linear, semi-infinite media specified by their dielectric permittivities (ε_a , ε_b) and magnetic permeabilities (μ_a , μ_b). Assume that both media are transparent at the frequency of interest ω , namely, their ε and μ are real-valued, either with ε, μ both >0 or ε, μ both <0. A homogeneous plane-wave propagating in the (ε_a, μ_a) medium, arrives at the interface with the (ε_b, μ_b) medium at an angle of incidence θ .

- (5 pts) a) Let the two media have equal refractive indices but differing impedances, that is, $n_a = n_b$ but $\sqrt{\mu_a/\varepsilon_a} \neq \sqrt{\mu_b/\varepsilon_b}$. Find the Fresnel reflection coefficients ρ_p and ρ_s for *p* and *s*-polarized light at the arbitrary angle of incidence θ . Verify that $\rho_p = \rho_s$ at normal incidence.
- (5 pts) b) Let the two media now have differing refractive indices but equal impedances, that is, $n_a \neq n_b$ but $\sqrt{\mu_a/\varepsilon_a} = \sqrt{\mu_b/\varepsilon_b}$. At what angle (or angles) of incidence and for which polarization states will the reflectivity be exactly zero? Explain.

3) A region of space contains arbitrary charge, current, polarization, and magnetization distributions $P_{\text{free}}(\mathbf{r},t)$, $J_{\text{free}}(\mathbf{r},t)$, $P(\mathbf{r},t)$ and $M(\mathbf{r},t)$. Consider an arbitrary surface, not necessarily

flat but reasonably smooth, that cuts this medium into two parts, as shown. For a given point \mathbf{r}_0 on this surface, let \mathbf{r}_0^+ be a point slightly to one side, and \mathbf{r}_0^- a point slightly to the opposite side of the surface, with the short line segment joining \mathbf{r}_0^- to \mathbf{r}_0^+ being perpendicular to the surface at \mathbf{r}_0 . Also let the symbols || and \perp indicate field components that are, respectively, parallel and perpendicular to the surface in the vicinity of \mathbf{r}_0 . Each of Maxwell's equations says something about the continuity or discontinuity of the various field components, e.g., the difference between $\mathbf{E}_{\parallel}(\mathbf{r}_0^-,t)$ and $\mathbf{E}_{\parallel}(\mathbf{r}_0^+,t)$, on the two sides of the surface. These are generally known as electromagnetic boundary conditions.

- (2 pts) a) Comparing *D*-fields at \mathbf{r}_{o}^{-} and \mathbf{r}_{o}^{+} , what does Maxwell's 1st equation say about the continuity or discontinuity of the *D*-field? Explain.
- (3 pts) b) Similarly, what does Maxwell's 2nd equation say about the continuity/discontinuity of the *H*-field across the surface? Explain.
- (3 pts) c) What does Maxwell's 3rd equation say about continuity/discontinuity of the *E*-field? Explain.
- (2 pts) d) What does Maxwell's 4th equation say about continuity/discontinuity of the *B*-field? Explain.

4) Two monochromatic, homogeneous plane-waves propagate along the x-axis in an isotropic, homogeneous, linear, transparent medium specified by its relative permeability and permittivity, $\mu(\omega)$ and $\varepsilon(\omega)$, respectively. The two plane-waves have frequencies ω_1 and ω_2 , with center frequency $\omega_c = \frac{1}{2}(\omega_1 + \omega_2)$ and frequency difference $\Delta \omega = \omega_2 - \omega_1 \ll \omega_c$. Both plane-waves are linearly polarized along the y-axis, having amplitudes $E_1 \hat{y} \cos(k_1 x - \omega_1 t)$ and $E_2 \hat{y} \cos(k_2 x - \omega_2 t)$. The duration T of the "beat" may be taken as half the period of the envelope of the superposition waveform, that is, $T = \pi/\Delta \omega$.

- (2 pts) a) Express k_1 and k_2 in terms of ω_1 , ω_2 , μ and ε .
- (3 pts) b) Using the expression $\partial \mathcal{E}_{E}(\mathbf{r},t)/\partial t = \mathbf{E}(\mathbf{r},t) \cdot \partial \mathbf{D}(\mathbf{r},t)/\partial t$, find the electric energy density $\mathcal{E}_{E}(\mathbf{r},t)$ as a function of *x* and *t*. (The constant of integration may be denoted by *C*_o, an unknown but inconsequential parameter.)
- (3 pts) c) Calculate the time-average of the energy density obtained in part (b) over the duration of a single beat, that is, from t (π/Δω) to t.
 [Your final answer must be a function of x and t. To simplify the above calculation, you may assume that ω₁ = m Δω and ω₂ = (m+1)Δω, where m is a large, positive integer.]
- (2 pts) d) At what velocity does the time-averaged electric energy density obtained in part (c) propagate along the *x*-axis?

Hint: $\sin a \cos a = \frac{1}{2} \sin(2a)$; $\sin a \cos b = \frac{1}{2} \sin(a+b) + \frac{1}{2} \sin(a-b)$; $\sin a + \sin b = 2 \sin[\frac{1}{2}(a+b)] \cos[\frac{1}{2}(a-b)]$.