Please write your name and ID number on all pages, then staple them together. Answer all questions.

Note: Bold symbols represent vectors and vector fields.

- 1) A monochromatic, finite-diameter light pulse has frequency ω , cross-sectional area A, and duration τ . The pulse is long and wide, meaning that its duration is much greater than the oscillation period, i.e., $\omega \tau >> 1$, and its smallest cross-sectional diameter is much greater than a wavelength, λ . Consequently, within the space-time region where the pulse resides, it can be approximated as a plane-wave. The pulse propagates in **vacuum** along the *z*-axis, and its *E*-field amplitude is $E_0 = E_{x0} \hat{x} + E_{y0} \hat{y}$.
- (3 pts) a) Find the *E*-field and *H*-field energies as well as the total energy content of the pulse.
- (2 pts) b) Find the time-averaged Poynting vector, $\langle S(r,t) \rangle$, and confirm that the total energy obtained in part (a) may also be derived from a knowledge of the Poynting vector.

Let the pulse arrive at **normal incidence** at the flat and smooth surface of a thick, heavy, solid block of absorptive material whose complex refractive index is $n(\omega) = 2.0 + 0.25i$.

- (2 pts) c) What is the total optical energy absorbed by the material?
- (3 pts) d) What is the mechanical momentum acquired by the material medium after the fragment of the pulse that has entered the medium is fully absorbed?
 - 2) The Lorentz oscillator model of a passive, isotropic, homogeneous medium, when augmented by the Clausius-Mosotti's local field correction, yields the dielectric susceptibility $\chi(\omega)$ in the vicinity of a resonance frequency ω_0 as follows:

$$\chi(\omega) = \frac{3C(\omega)}{3-C(\omega)},$$

where

$$C(\omega) = \frac{\omega_p^2}{\omega_o^2 - \omega^2 - i\gamma\omega}; \qquad \qquad \omega_p > 0, \ \omega_o > 0, \ \gamma \ge 0.$$

- (3 pts) a) Show that the imaginary part of $C(\omega)$ is either positive or zero, but never negative, whereas its real part may assume positive, zero, or negative values depending on the physical circumstances.
- (3 pts) b) Show that $\chi(\omega)$ obtained from the Clausius-Mosotti relation is similar to $C(\omega)$ in that its real part can be positive, zero, or negative, whereas its imaginary part must always be non-negative.
- (3 pts) c) The complex propagation vector $\boldsymbol{\sigma}$ of a plane-wave within a passive, isotropic, homogeneous, non-magnetic medium obeys the constraint $\boldsymbol{\sigma} \cdot \boldsymbol{\sigma} = \sigma_x^2 + \sigma_y^2 + \sigma_z^2 = \varepsilon(\omega) = 1 + \chi(\omega)$. Assuming σ_x and σ_y are real-valued, one finds $\sigma_z = \pm \sqrt{1 + \chi(\omega) \sigma_x^2 \sigma_y^2}$. In light of the result obtained in part (b) above, which of the two values (\pm) obtained for σ_z are acceptable? Explain.

- 3) Inside a homogeneous, isotropic, non-magnetic, dielectric medium of refractive index $n(\omega)$, a monochromatic, homogeneous plane-wave propagates along the *z*-axis. The plane-wave is **linearly-polarized** along the *x*-axis, and the medium is transparent, that is, $n(\omega)$ is real and positive.
- (3 pts) a) Write expressions for the plane-wave's electric and magnetic fields, E(r,t) and H(r,t), in terms of the *E*-field amplitude E_0 , the angular frequency ω , the refractive index $n(\omega)$, the speed of light in vacuum *c*, and the impedance of the free space Z_0 .
- (2 pts) b) Express the dielectric function $\varepsilon(\omega)$ and the electric susceptibility $\chi(\omega)$ as functions of the refractive index $n(\omega)$.
- (3 pts) c) Write an expression for the polarization density $P(\mathbf{r},t)$ in terms of E_0 , ω , c, ε_0 and $n(\omega)$. What are the distributions of bound charge and current densities, $\rho_{\text{bound}}(\mathbf{r},t)$ and $J_{\text{bound}}(\mathbf{r},t)$, in the medium?
 - 4) A p-polarized plane-wave is reflected from the flat interface between the free space and a homogeneous, isotopic, non-magnetic medium having the dielectric function $\varepsilon(\omega)$. The Fresnel reflection coefficient at the incidence angle θ is given by

$$r_p = |r_p| \exp(i\phi_p) = \frac{E'_x}{E_x} = \frac{\sqrt{\varepsilon(\omega) - \sin^2 \theta - \varepsilon(\omega) \cos \theta}}{\sqrt{\varepsilon(\omega) - \sin^2 \theta + \varepsilon(\omega) \cos \theta}} \cdot$$

- (2 pts) a) In terms of E_p , r_p , θ , ω and c, write an expression for the *z*-component of the *E*-field, $E_z(x, z=0^-, t)$, immediately before the entrance facet of the medium.
- (2 pts) b) Using the continuity of D_{\perp} at the interface, write an expression for $E_z(x, z=0^+, t)$ immediately beneath the entrance facet.
- (2 pts) c) What is the bound surface charge density $\sigma_s(x, z=0, t)$ at the entrance facet of the medium?
 - 5) The refractive index of a transparent dielectric medium is given by $n(\omega) = \sqrt{1 [\omega_p^2/(\omega^2 \omega_o^2)]}$ both below and above a resonance frequency ω_o . The immediate vicinity of ω_o is excluded from consideration in order to ensure that γ , the damping coefficient in the Lorentz oscillator model, may be safely ignored. Moreover, the frequencies between ω_o and $\sqrt{\omega_o^2 + \omega_p^2}$ are also excluded to ensure that $n(\omega)$ is real-valued.
- (3 pts) a) Find an expression for the group refractive index $n_g(\omega) = n(\omega) + \omega [dn(\omega)/d\omega]$ in terms of the parameters ω_p and ω_0 .
- (2 pts) b) Show that, within the allowed range of frequencies, the product of $n_g(\omega)$ and $n(\omega)$ is always greater than unity.
- (1 pt) c) In the frequency range $\omega > \sqrt{\omega_o^2 + \omega_p^2}$, where $0 < n(\omega) < 1$, show that $n_g(\omega) > 1$.
- (1 pt) d) In the frequency range $0 < \omega < \omega_0$, where $n(\omega) > 1$, show that $n_g(\omega) > 1$.