Please write your name and ID number on all pages, then staple them together. Answer all questions.

Note: Bold symbols represent vectors and vector fields.

1) A finite-diameter collimated beam arrives at an angle θ at the entrance facet of a glass prism ($n=1.5$), as shown. The beam enters the prism, bounces off the bottom facet, then exits on the right-hand side. (The beam diameter is large enough
 that the effects of diffraction may be ignored; the beam may thus be treated as a plane-wave along its entire path.)
a) Assuming the incident beam is p-polarized, find the angle of incidence θ and a range of values for the prism angle ψ, such that the entire beam would emerge from the exit facet with no reflection losses whatsoever.
b) Using the same values for the angles θ, ϕ, ψ as in part (a), what fraction of the incident optical power will be lost to reflections if the incident beam is s-polarized? (Ignore the effects of multiple reflections inside the prism.)
$(2$ pts) c) Answer the same question as in part (b) for a circularly-polarized incident beam.
2) A monochromatic plane wave (frequency = ω) is incident from the free space at an angle θ on the flat surface of a homogeneous, isotropic, semi-infinite medium of dielectric constant $\varepsilon(\omega)=\varepsilon_{R}(\omega)+\mathrm{i} \varepsilon_{I}(\omega)$.
(2 pts) a) Find the propagation vector $\sigma^{\prime \prime}=\sigma_{R}{ }^{\prime \prime}+\mathrm{i} \sigma_{I}^{\prime \prime}$ inside the medium.
b) Show that at normal incidence (i.e., $\theta=0^{\circ}$), the real and imaginary components of $\sigma^{\prime \prime}$ are parallel to each other.
$(2 \mathrm{pts}) \mathrm{c})$ At oblique incidence (i.e., $\left.\theta \neq 0^{\circ}\right)$, show that $\sigma_{R}{ }^{\prime \prime}$ and $\sigma_{I}^{\prime \prime}$ can,
 in general, have an arbitrary angle with each other.
(2 pts) d) Assuming $\varepsilon_{I}(\omega)=0$, under what circumstances will $\sigma_{R}{ }^{\prime \prime}$ and $\sigma_{I} "$ be orthogonal to each other?
3) The real-valued function $f(t)$ is obtained from the superposition of three complex functions as follows: $f(t)=\operatorname{Real}\left\{A_{0} \exp \left[\mathrm{i}\left(\phi_{0}-\omega_{0} t\right)\right]+A_{1} \exp \left[\mathrm{i}\left(\phi_{1}-\omega_{1} t\right)\right]+A_{2} \exp \left[\mathrm{i}\left(\phi_{2}-\omega_{2} t\right)\right]\right\}$. Although the amplitudes A_{0}, A_{1}, A_{2} have no specific relationship with each other, the initial phase angles are such that ϕ_{0} is halfway between ϕ_{1} and ϕ_{2}, that is, $\phi_{1}=\phi_{0}-\Delta \phi$ and $\phi_{2}=\phi_{0}+\Delta \phi$. Similarly, the frequencies are chosen such that ω_{0} is halfway between ω_{1} and ω_{2}, namely, $\omega_{1}=\omega_{0}-\Delta \omega$ while $\omega_{2}=\omega_{0}+\Delta \omega$. In what follows it will be assumed that $\Delta \omega \ll \omega_{0}$. Factoring out the common frequency term, $\exp \left(-i \omega_{0} t\right)$, one can write $f(t)=\operatorname{Real}\left\{g(t) \exp \left(-\mathrm{i} \omega_{0} t\right)\right\}$, where $g(t)$ is a slowly varying function of time. The oscillations of $f(t)$ are thus seen to arise from the rapid (clockwise) rotation of

$\exp \left(-\mathrm{i} \omega_{0} t\right)$ in the complex plane, while the slowly-changing $g(t)$ determines the envelope and phase of $f(t)$.
(5 pts) In terms of $\Delta \phi$ and $\Delta \omega$ find the time t_{0} at which the envelope of $f(t)$ reaches its peak value.
(Hint: t_{0} can be derived from simple geometric arguments, without complicated calculations.)
4) A light pulse propagating along the z-axis in a medium of refractive index $n(\omega)=$ $n_{R}(\omega)+\mathrm{i} n_{I}(\omega)$ is a superposition of plane-waves in a narrow range of frequencies $\left(\omega_{1}, \omega_{2}\right)$ centered at ω_{0}. Each plane-wave has propagation vector $\sigma(\omega)=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)=(0,0, n(\omega))$. For linearly-polarized light with E-field along the x-axis, the pulse's E-field amplitude at a given point $\boldsymbol{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ may be written as follows:

$$
E_{\chi}\left(\boldsymbol{r}_{0}, t\right)=\operatorname{Real}\left\{\int_{\omega_{1}}^{\omega_{2}} E_{0}(\omega) \exp \left\{\mathrm{i}\left[\omega n(\omega)\left(z_{0} / c\right)-\omega t\right]\right\} \mathrm{d} \omega\right\}
$$

$(3 \mathrm{pts}) \quad$ a) Separate the term containing $n_{I}(\omega)$ from the exponential function, treating it as a coefficient of the spectral amplitude $E_{0}(\omega)$. (In this problem E_{0} is assumed to be a real-valued function of $\omega)$. The remaining phase term in the exponent, namely, $\left[\omega n_{R}(\omega)\left(\mathrm{z}_{0} / c\right)-\omega t\right.$], may be expanded in a Taylor series around the central frequency ω_{0}. Assuming the bandwidth $\left(\omega_{2}-\omega_{1}\right)$ is sufficiently narrow that the first two terms in the Taylor series expansion of the phase-factor suffice, write an approximate expression for $E_{\chi}\left(\boldsymbol{r}_{0}, t\right)$ using this Taylor series expansion. (Note: The first term of the series, being independent of ω, may be taken outside the integral.)
$(3 \mathrm{pts}) \quad$ b) Considering that the time-dependence factor $\exp \left[-\mathrm{i}\left(\omega-\omega_{0}\right) t\right]$ under the integral sign varies slowly compared to $\exp \left(-\mathrm{i} \omega_{0} t\right)$, which is outside the integral, find the time t_{0} at which the peak of the pulse arrives at $z=z_{0}$. (Hint: At the pulse's peak, the terms under the integral should all be in-phase.)
$(3 \mathrm{pts}) \quad$ c) By definition, the group velocity V_{g} is the velocity of the peak position of the pulse. Use the result of part (b) to find an expression for V_{g}. Explain the different roles played by $n_{R}(\omega)$ and $n_{I}(\omega)$ in the pulse propagation process.
5) The electric susceptibility of a gain medium in the vicinity of a resonance frequency ω_{0} can be shown (from quantum calculations) to be similar to that of a lossy medium in the Lorentz oscillator model except for the sign of the oscillator strength, which is negative for the gain medium. Thus

$$
\chi_{e}(\omega)=\frac{\omega_{p}^{2}}{\omega^{2}-\omega_{0}^{2}+\mathrm{i} \gamma \omega} ; \quad \quad \omega_{p}>0 \text { and } \omega_{0} \gg \gamma>0 .
$$

Assuming that at resonance $\left|\chi_{e}\left(\omega_{0}\right)\right|=\omega_{p}^{2} /\left(\gamma \omega_{0}\right)$ is sufficiently small, the approximation $n(\omega)=\sqrt{1+\chi_{e}(\omega)} \approx 1+1 / 2 \chi_{e}(\omega)$ will be applicable in the vicinity of ω_{0}.
$(3 \mathrm{pts}) \quad$ a) Find the real and imaginary parts of the refractive index $n(\omega)$.
(3 pts) b) Plot $n_{R}(\omega)$ and $n_{I}(\omega)$ in the vicinity of ω_{0}. (A rough sketch will suffice.)
(3 pts) c) Determine the group velocity V_{g} for a pulse of light centered at $\omega=\omega_{0}$. For the specific values of $\omega_{0}=10^{15} \mathrm{rad} / \mathrm{sec}, \omega_{p}=10^{12} \mathrm{rad} / \mathrm{sec}$, and $\gamma=10^{10} \mathrm{rad} / \mathrm{sec}$, find the numerical value of V_{g}.

