Please write your name and ID number on all pages, then staple them together. Answer all questions.

Note: Bold symbols represent vectors and vector fields.

1) A finite-diameter collimated beam arrives at an angle θ at the entrance facet of a glass prism (n = 1.5), as shown. The beam enters the prism, bounces off the bottom facet, then exits on the right-hand side. (The beam diameter is large enough

that the effects of diffraction may be ignored; the beam may thus be treated as a plane-wave along its entire path.)

- (4 pts) a) Assuming the incident beam is p-polarized, find the angle of incidence θ and a range of values for the prism angle ψ , such that the entire beam would emerge from the exit facet with no reflection losses whatsoever.
- (3 pts) b) Using the same values for the angles θ , ϕ , ψ as in part (a), what fraction of the incident optical power will be lost to reflections if the incident beam is s-polarized? (Ignore the effects of multiple reflections inside the prism.)
- (2 pts) c) Answer the same question as in part (b) for a circularly-polarized incident beam.

2) A monochromatic plane wave (frequency = ω) is incident from the free space at an angle θ on the flat surface of a homogeneous, isotropic, semi-infinite medium of dielectric constant $\varepsilon(\omega) = \varepsilon_R(\omega) + i \varepsilon_I(\omega)$.

- (2 pts) a) Find the propagation vector $\sigma'' = \sigma_R'' + i\sigma_I''$ inside the medium.
- (2 pts) b) Show that at normal incidence (i.e., $\theta = 0^{\circ}$), the real and imaginary components of σ'' are parallel to each other.
- (2 pts) c) At oblique incidence (i.e., $\theta \neq 0^{\circ}$), show that $\sigma_{R'}$ and $\sigma_{I'}$ can, in general, have an arbitrary angle with each other.

(2 pts) d) Assuming $\varepsilon_I(\omega) = 0$, under what circumstances will σ_R'' and σ_I'' be orthogonal to each other?

3) The real-valued function f(t) is obtained from the superposition of three complex functions as follows: $f(t) = \text{Real}\{A_0 \exp[i(\phi_0 - \omega_0 t)] + A_1 \exp[i(\phi_1 - \omega_1 t)] + A_2 \exp[i(\phi_2 - \omega_2 t)]\}$. Although the amplitudes A_0 , A_1 , A_2 have no specific relationship with each other, the initial phase angles are such that ϕ_0 is halfway between ϕ_1 and ϕ_2 , that is, Im $\phi_1 = \phi_0 - \Delta \phi$ and $\phi_2 = \phi_0 + \Delta \phi$. Similarly, the frequencies are chosen such that ω_0 is halfway between ω_1 and ω_2 , $A_{\rm o} \exp(\mathrm{i}\phi_{\rm o})$ $A_2 \exp(i\phi_2)$ namely, $\omega_1 = \omega_0 - \Delta \omega$ while $\omega_2 = \omega_0 + \Delta \omega$. In what follows it will be assumed that $\Delta \omega \ll \omega_0$. Factoring out $A_1 \exp(i\phi_1)$ the common frequency term, $exp(-i\omega_0 t)$, one can write ► Re $f(t) = \text{Real}\{g(t)\exp(-i\omega_0 t)\}, \text{ where } g(t) \text{ is a slowly}$ varying function of time. The oscillations of f(t) are thus seen to arise from the rapid (clockwise) rotation of

 $\exp(-i \omega_0 t)$ in the complex plane, while the slowly-changing g(t) determines the envelope and phase of f(t).

- (5 pts) In terms of $\Delta \phi$ and $\Delta \omega$ find the time t_0 at which the envelope of f(t) reaches its peak value. (**Hint**: t_0 can be derived from simple geometric arguments, without complicated calculations.)
 - 4) A light pulse propagating along the *z*-axis in a medium of refractive index $n(\omega) = n_R(\omega) + in_I(\omega)$ is a superposition of plane-waves in a narrow range of frequencies (ω_1, ω_2) centered at ω_0 . Each plane-wave has propagation vector $\boldsymbol{\sigma}(\omega) = (\sigma_x, \sigma_y, \sigma_z) = (0, 0, n(\omega))$. For linearly-polarized light with *E*-field along the *x*-axis, the pulse's *E*-field amplitude at a given point $\boldsymbol{r}_0 = (x_0, y_0, z_0)$ may be written as follows:

$$E_x(\mathbf{r}_0, t) = \operatorname{Real}\left\{\int_{\omega_1}^{\omega_2} E_0(\omega) \exp\left\{i\left[\omega n(\omega)(z_0/c) - \omega t\right]\right\} d\omega\right\}.$$

- (3 pts) a) Separate the term containing n_I(ω) from the exponential function, treating it as a coefficient of the spectral amplitude E₀(ω). (In this problem E₀ is assumed to be a real-valued function of ω). The remaining phase term in the exponent, namely, [ωn_R(ω)(z₀/c) ωt], may be expanded in a Taylor series around the central frequency ω₀. Assuming the bandwidth (ω₂ ω₁) is sufficiently narrow that the first two terms in the Taylor series expansion of the phase-factor suffice, write an approximate expression for E_x(r₀, t) using this Taylor series expansion. (Note: The first term of the series, being independent of ω, may be taken outside the integral.)
- (3 pts) b) Considering that the time-dependence factor $\exp[-i(\omega \omega_0)t]$ under the integral sign varies slowly compared to $\exp(-i\omega_0 t)$, which is outside the integral, find the time t_0 at which the peak of the pulse arrives at $z = z_0$. (**Hint**: At the pulse's peak, the terms under the integral should all be in-phase.)
- (3 pts) c) By definition, the group velocity V_g is the velocity of the peak position of the pulse. Use the result of part (b) to find an expression for V_g . Explain the different roles played by $n_R(\omega)$ and $n_I(\omega)$ in the pulse propagation process.
 - 5) The electric susceptibility of a gain medium in the vicinity of a resonance frequency ω_0 can be shown (from quantum calculations) to be similar to that of a lossy medium in the Lorentz oscillator model except for the sign of the oscillator strength, which is negative for the gain medium. Thus

$$\chi_e(\omega) = \frac{\omega_p^2}{\omega^2 - \omega_0^2 + i\gamma\omega}; \qquad \qquad \omega_p > 0 \text{ and } \omega_0 \gg \gamma > 0.$$

Assuming that at resonance $|\chi_e(\omega_0)| = \omega_p^2/(\gamma\omega_0)$ is sufficiently small, the approximation $n(\omega) = \sqrt{1 + \chi_e(\omega)} \approx 1 + \frac{1}{2}\chi_e(\omega)$ will be applicable in the vicinity of ω_0 .

- (3 pts) a) Find the real and imaginary parts of the refractive index $n(\omega)$.
- (3 pts) b) Plot $n_R(\omega)$ and $n_I(\omega)$ in the vicinity of ω_0 . (A rough sketch will suffice.)
- (3 pts) c) Determine the group velocity V_g for a pulse of light centered at $\omega = \omega_0$. For the specific values of $\omega_0 = 10^{15}$ rad/sec, $\omega_p = 10^{12}$ rad/sec, and $\gamma = 10^{10}$ rad/sec, find the numerical value of V_g .