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Opti 501 Final Exam (12/13/2007) Time: 2 hours 
 

Please write your name and ID number on all pages, then staple them together. 
Answer all questions. 

 
Note: Bold symbols represent vectors and vector fields. 
 
1) A finite-diameter collimated beam arrives 

at an angle θ at the entrance facet of a 
glass prism (n = 1.5), as shown. The 
beam enters the prism, bounces off the 
bottom facet, then exits on the right-hand 
side. (The beam diameter is large enough 
that the effects of diffraction may be ignored; the beam may thus be treated as a plane-wave 
along its entire path.) 

a) Assuming the incident beam is p-polarized, find the angle of incidence θ  and a range of values 
for the prism angle ψ, such that the entire beam would emerge from the exit facet with no 
reflection losses whatsoever. 

b) Using the same values for the angles θ, φ, ψ  as in part (a), what fraction of the incident optical 
power will be lost to reflections if the incident beam is s-polarized? (Ignore the effects of 
multiple reflections inside the prism.) 

c) Answer the same question as in part (b) for a circularly-polarized incident beam. 
 
2) A monochromatic plane wave (frequency = ω) is incident 

from the free space at an angle θ  on the flat surface of a 
homogeneous, isotropic, semi-infinite medium of dielectric 
constant ε (ω) = εR(ω) + iεI (ω). 

a) Find the propagation vector σ"=σR"+iσI" inside the medium. 
b) Show that at normal incidence (i.e., θ = 0°), the real and 

imaginary components of σ" are parallel to each other. 
c) At oblique incidence (i.e., θ ≠ 0°), show that σR"  and σI" can, 

in general, have an arbitrary angle with each other. 
d) Assuming εI (ω) = 0, under what circumstances will σR"  and σI" be orthogonal to each other? 
 
3) The real-valued function f (t) is obtained from the superposition of three complex functions as 

follows:  f (t) = Real{Aoexp[i(φo – ωo t)] + A1exp[i(φ1 – ω1 t)] + A2exp[i(φ2 – ω2 t)]}. Although 
the amplitudes Ao, A1, A2 have no specific relationship with each other, the initial phase angles 
are such that φo is halfway between φ1 and φ2, that is, 
φ1 = φo − ∆φ  and φ2 = φo + ∆φ. Similarly, the frequencies 
are chosen such that ωo is halfway between ω1 and ω2, 
namely, ω1 = ωo − ∆ω while ω2 = ωo + ∆ω. In what 
follows it will be assumed that ∆ω << ωo. Factoring out 
the common frequency term, exp(−iωot), one can write 
f (t) = Real{g(t)exp(–iωo t)}, where g(t) is a slowly 
varying function of time. The oscillations of f (t) are 
thus seen to arise from the rapid (clockwise) rotation of 
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exp(–iωo t) in the complex plane, while the slowly-changing g(t) determines the envelope and 
phase of f (t). 

 

In terms of ∆φ and ∆ω find the time to at which the envelope of f (t) reaches its peak value. 
(Hint: to can be derived from simple geometric arguments, without complicated calculations.) 

 
4) A light pulse propagating along the z-axis in a medium of refractive index n(ω) = 

nR(ω) + inI(ω) is a superposition of plane-waves in a narrow range of frequencies (ω1, ω2) 
centered at ωo. Each plane-wave has propagation vector σ (ω) = (σx, σy, σz) = (0, 0, n(ω)). For 
linearly-polarized light with E-field along the x-axis, the pulse’s E-field amplitude at a given 
point ro = (xo, yo, zo) may be written as follows: 

 Ex(ro, t) = Real   ∫ω1

ω2
Eo(ω) exp{i[ωn(ω)(zo/c) – ωt]}dω   . 

a) Separate the term containing nI(ω) from the exponential function, treating it as a coefficient of 
the spectral amplitude Eo(ω). (In this problem Eo is assumed to be a real-valued function of 
ω). The remaining phase term in the exponent, namely, [ωnR(ω)(zo/c) – ωt], may be expanded 
in a Taylor series around the central frequency ωo. Assuming the bandwidth (ω2 −ω1) is 
sufficiently narrow that the first two terms in the Taylor series expansion of the phase-factor 
suffice, write an approximate expression for Ex(ro, t) using this Taylor series expansion. 
(Note: The first term of the series, being independent of ω, may be taken outside the integral.) 

b) Considering that the time-dependence factor exp[−i(ω – ωo) t] under the integral sign varies 
slowly compared to exp(−iωot), which is outside the integral, find the time to at which the 
peak of the pulse arrives at z = zo. (Hint: At the pulse’s peak, the terms under the integral 
should all be in-phase.) 

c) By definition, the group velocity Vg is the velocity of the peak position of the pulse. Use the 
result of part (b) to find an expression for Vg. Explain the different roles played by nR(ω) and 
nI(ω) in the pulse propagation process. 

 
5) The electric susceptibility of a gain medium in the vicinity of a resonance frequency ωo can be 

shown (from quantum calculations) to be similar to that of a lossy medium in the Lorentz 
oscillator model except for the sign of the oscillator strength, which is negative for the gain 
medium. Thus 

 
 χe(ω) =                             ; ωp > 0  and  ωo >> γ  > 0.  
 
 

Assuming that at resonance |χe(ωo)| = ωp
2/(γωo) is sufficiently small, the approximation 

n(ω) =√ 1 +χe(ω) ≈ 1 + ½χe(ω) will be applicable in the vicinity of ωo. 
a) Find the real and imaginary parts of the refractive index n(ω). 
b) Plot nR(ω) and nI (ω) in the vicinity of ωo. (A rough sketch will suffice.) 
c) Determine the group velocity Vg for a pulse of light centered at ω = ωo. For the specific values 

of ωo = 1015 rad/sec, ωp = 1012 rad/sec, and γ  = 1010 rad/sec, find the numerical value of Vg. 
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