rE_x

 τE_x

> x

Please write your name and ID number on all pages, then staple them together. Answer all questions.

 \overline{Z}

n = 1

 $n = n_{\rm o}$

n = 1

Note: Bold symbols represent vectors and vector fields.

- 1) A monochromatic plane-wave is normally incident upon a transparent dielectric slab (i.e., real-valued refractive index n_0). The incident beam is linearly polarized, with *E*-field along the *x*-axis, as shown. The slab's reflection and transmission coefficients are *r* and τ , respectively.
- (3 pts) a) Express the average rate of flow of optical energy $\langle S_z \rangle$ (i.e., energy per unit area per unit time) in the incident beam in terms of E_x .
- (3 pts) b) Show that the fraction of reflected optical energy is $R = |r|^2$, while the fraction of transmitted optical energy is $T = |\tau|^2$.
- (3 pts) c) Use the conservation of energy to derive a relationship between R and T.
- (3 pts) d) Use the conservation of momentum to find the radiation pressure (i.e., time-averaged force per unit area) on the slab in terms of the incident beam's $\langle S_z \rangle$ and the slab's *R* and *T*.

2) In the Lorentz oscillator model, the charge +q remains stationary, while the applied electric field *E* displaces the charge -q along the z-axis. The spring constant is α, the dynamic friction coefficient is β, and the effective mass of the moving charge is *m*. Since the focus of this problem is on lossless (i.e., transparent) media, we will assume β = 0, that is, χ(ω) and ε(ω) are real-valued. The force exerted by the *E*-field on the mobile charge is -qE; denoting the displacement by Δz, the work done by the *E*-field on the dipole equals the change in the dipole's internal energy: Δ*E* = -qE Δz = *E* · Δ*p*.

- (2 pts) b) Show that the above result is consistent with the expression for the *total E*-field energy density, $\frac{1}{2}\varepsilon_0\varepsilon(0)|E_0|^2$, within a uniformly polarized dielectric material.
- (3 pts) c) Assume now that a uniform *E*-field oscillates with a constant frequency ω , namely, $E(\mathbf{r}, t) = E_0 \cos(\omega t + \phi_0)$. In this case $\mathbf{P} = \varepsilon_0 \chi(\omega) \mathbf{E}$. Find the *total E*-field energy density (i.e., that of the field plus the dipoles), first as a function of time *t*, and then in time-averaged form.
- Bonus d) Let $E(\mathbf{r}, t) = E_0[\sin(\omega_1 t) \sin(\omega_2 t)]$ and $P(\mathbf{r}, t) = \varepsilon_0 E_0[\chi(\omega_1) \sin(\omega_1 t) \chi(\omega_2) \sin(\omega_2 t)]$, where (5 pts) $\omega_1 = (m - \frac{1}{2})\Delta\omega$ and $\omega_2 = (m + \frac{1}{2})\Delta\omega$, with *m* being a large but otherwise arbitrary integer. The period of the beat signal thus produced is $T = 2\pi/\Delta\omega$. By averaging over the period *T* of the beat signal, determine the time-averaged *total* energy density associated with the *E*-field.

Hint: $2\sin(a)\cos(b) = \sin(a+b) + \sin(a-b)$ and $2\sin(a)\sin(b) = \cos(a-b) - \cos(a+b)$.

- 3) A *s*-polarized plane-wave is incident on the air gap between a glass prism of refractive index n_0 and a glass substrate of the same index. The plane of incidence is *xz*, the gap-width is *d*, and the incidence angle θ is greater than the critical angle of total internal reflection. (Any transmission through the gap will, therefore, be a manifestation of "frustrated" total internal reflection.)
- (2 pts) a) For the five plane-waves shown in the figure, express the propagation vectors $\boldsymbol{\sigma}$ in terms of θ and the refractive index n_0 .
- (2 pts) b) Find the magnetic field components H_x , H_z for each of the five plane-waves in terms of the corresponding *E*-fields, the incidence angle θ , and the refractive index n_0 .

- (3 pts) c) Write the continuity equations for tangential *E* and *H*-fields at the two boundaries, namely, at z = 0 and z = -d.
- (3 pts) d) Determine the reflection coefficient r by solving the four equations obtained in part (c). **Hint**: The four unknowns in these equations are r, a, b, τ .
 - 4) Two linearly-polarized plane-waves, one having frequency ω₁ and free-space wavelength λ₁, the other having frequency ω₂ and free-space wavelength λ₂, propagate in opposite directions along the ±*z*-axis. The propagation medium is free-space, and the field amplitudes of the two beams are identical (except, of course, for the H_{oy} directions, which are opposite each other). The beams interfere and set up fringes parallel to the *xy*-plane. By definition, ω₀ = ½(ω₁ + ω₂) and Δω = (ω₂ ω₁), where Δω << ω₀.

- (2 pts) a) Write the real-valued E- and H-field amplitudes for each beam as functions of z and t.
- (2 pts) b) Express the total *E* and *H*-fields for the superposition of the two beams. Combine the trigonometric functions and obtain expressions containing ω_0 and $\Delta \omega$.
- (3 pts) c) For the superposition, find the *time-averaged E-* and *H*-field energy densities as functions of *z* and *t*. (Time averaging is done with respect to rapid oscillations only.) Do the energy densities remain stationary or travel along the *z*-axis? If they travel, specify the direction of travel.
- (3 pts) d) For the two-beam superposition, find the Poynting vector S and its time average $\langle S \rangle$ (time-averaging is done over rapid oscillations only). On the average, does the total energy flow to the right, to the left, or not at all?

Hint:
$$\cos(a) + \cos(b) = 2\cos[\frac{1}{2}(a+b)]\cos[\frac{1}{2}(a-b)]$$

 $\cos(a) - \cos(b) = -2\sin[\frac{1}{2}(a+b)]\sin[\frac{1}{2}(a-b)]$