Please write your name and ID number on all the pages, then staple the pages together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

1) Three charged particles, all having the same electrical charge q, are placed (and immobilized) in the $x y$-plane at the vertices of an equilateral triangle, as shown.
a) Find the coordinates of the point $\left(x_{0}, y_{0}\right)$ at which the total electric field \boldsymbol{E} is exactly equal to zero.
b) Can $\left(x_{0}, y_{0}\right)$ be a stable equilibrium point for a charged particle? Explain the reasoning behind your answer.

2) A hollow spherical shell of radius R and uniform surface charge density σ_{o} is centered at the origin of the $x y z$ coordinate system. The shell is spinning around the z-axis at a constant angular velocity ω.
$(1 \mathrm{pt}) \quad a)$ What is the total charge Q of the sphere?
b) At the point $\boldsymbol{r}^{\prime}=\left(R, \theta^{\prime}, \phi^{\prime}\right)$ located on the sphere's surface, express the surface current density $\boldsymbol{J}_{s}\left(\boldsymbol{r}^{\prime}\right)$ in terms of $\sigma_{0}, R, \theta^{\prime}$ and ω.
$\left(\begin{array}{ll}2 & \text { pts }) \\ c\end{array}\right)$ Due to symmetry, the observation point \boldsymbol{r} may be assumed to lie in the $y z$-plane, that is, $\boldsymbol{r}=(0, y, z)$. Write an expression for the distance $\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|$ between the observation point and the point \boldsymbol{r}^{\prime} on the sphere surface. Assuming $|\boldsymbol{r}| \gg R$, use the Taylor series expansion to approximate the inverse of the distance between \boldsymbol{r} and \boldsymbol{r}^{\prime}, namely, $1 /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|$, in terms of y, z, R, θ^{\prime} and ϕ^{\prime}.

$\boldsymbol{d})$ Write an expression for the vector potential \boldsymbol{A} at the observation point \boldsymbol{r}.
Hint: Due to symmetry, $\boldsymbol{A}(\boldsymbol{r})$ has an azimuthal component along the ϕ direction only.
(3 pts) e) Assuming once again that $|\boldsymbol{r}| \gg R$, simplify the double-integral in (d) using the approximate form of $1 /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|$ obtained in (c). Determine $\boldsymbol{A}(\boldsymbol{r})$ by carrying out the necessary integrations.

$$
\text { (Hint: } \left.\int_{0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta=4 / 3 ; \quad \int_{0}^{2 \pi} \sin ^{2} \phi \mathrm{~d} \phi=\pi ; \quad \int_{0}^{2 \pi} \sin \phi \mathrm{~d} \phi=0\right)
$$

$(2 \mathrm{pts}) \boldsymbol{f})$ Show that the spinning charged sphere behaves as a magnetic dipole when observed from sufficiently far away. Express the magnetic dipole moment \boldsymbol{m} in terms of Q, R and ω.
(2 pts) g) Let the spherical shell's total mass M be uniformly distributed over its surface. Show that the angular momentum of the shell around the z-axis is $L=2 / 3 M R^{2} \omega \hat{z}$.
$(1 \mathrm{pt}) \boldsymbol{h})$ Combining the results obtained in parts (f) and (g), express the magnetic dipole moment \boldsymbol{m} in terms of Q, M and \boldsymbol{L}.
3) The single-oscillator Lorentz model for conduction electrons leads to the dielectric function $\varepsilon(\omega)=1-\omega_{p}^{2} /\left(\omega^{2}+\mathrm{i} \gamma \omega\right)$, where $\omega_{p}=\sqrt{N q^{2} / m \varepsilon_{0}}$ is the plasma frequency, and γ is the damping parameter. At high frequencies where $\omega \gg \gamma$, the imaginary term $\mathrm{i} \gamma \omega$ is negligible (compared to ω^{2}), and the dielectric function may be approximated as $\varepsilon(\omega) \approx 1-\left(\omega_{p} / \omega\right)^{2}$. The material's behavior in this frequency regime is said to be plasma-like.
a) Beyond the plasma frequency, where $\omega>\omega_{p}$ (and, of course, $\omega \gg \gamma$), show that the material becomes transparent.
b) Find the phase velocity V_{p} of electromagnetic waves in a transparent, plasma-like material. Show that $V_{p}>c$, where c is the speed of light in vacuum.
c) Find the group velocity V_{g} of electromagnetic waves in a transparent plasma-like material. Show that $V_{g}<c$.
4) A homogeneous plane-wave of frequency ω, linearly polarized along the x-axis, is normally incident from the free space onto the flat surface of a plasma-like medium. The medium's dielectric function may be approximated as $\varepsilon(\omega) \approx 1-\left(\omega_{p} / \omega\right)^{2}$, provided that $\omega \gg \gamma$. (As usual, γ is the Lorentz oscillator's damping parameter.) The concern of the present problem is the frequency regime slightly below the plasma frequency, where $\gamma \ll \omega<\omega_{p}$.
$(3 \mathrm{pts}) \quad \boldsymbol{a})$ Write the field distributions for the incident $\left(E_{x}, H_{y}\right)$, reflected $\left(E_{x}^{\prime}, H_{y}^{\prime}\right)$, and transmitted $\left(E_{x}^{\prime \prime}, H^{\prime \prime}\right)$ beams throughout the relevant (semi-infinite) media.
$\left(\begin{array}{ll}2 & \mathrm{pts}) \\ \boldsymbol{b}\end{array}\right)$ Match the boundary conditions at the interface between the free space and the plasma-like medium to find the reflection and transmission coefficients r and τ.
c) Show that the reflectance $R=|r|^{2}$ of the plasma-like medium (in the frequency regime $\omega<\omega_{p}$) is 100%.
$(2 \mathrm{pts}) \boldsymbol{d})$ Determine the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ in the plasma-like medium, and show that it is consistent
 with the 100% reflectance found in part (c).
$(1 \mathrm{pt}) \quad \boldsymbol{e})$ What is the penetration depth (or skin depth) within the plasma-like medium?
(6 pts) 5) A homogeneous plane-wave of wavelength λ_{0} traveling in free space is reflected at an angle θ from the flat surface of a perfect conductor (i.e., $\left|n_{R}+\mathrm{i} n_{I}\right| \rightarrow \infty$). Treating the cases of p - and s-polarization separately, determine the reflection coefficient r, surface-current density $\boldsymbol{J}_{s}(\boldsymbol{r}, t)$, and surface-charge density $\sigma_{s}(\boldsymbol{r}, t)$ in each case.

