Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1)

2 Pts
a) The function $g_{\alpha}(x)=\alpha \exp (-\alpha|x|)$ is defined for real-valued and positive α over the entire x axis. To what well-known function does $g_{\alpha}(x)$ approach in the limit when $\alpha \rightarrow \infty$?
b) Expanding the arbitrary function $f(x)$ in a Taylor series around $x=0$, evaluate the integral $\int_{-\infty}^{\infty} f(x) g_{\alpha}(x) \mathrm{d} x$ in the limit when $\alpha \rightarrow \infty$.
c) The function $h_{\beta}(x)=\beta^{3 / 2} x \exp \left(-\beta x^{2}\right)$ is defined for real-valued and positive β over the entire x-axis. To what well-known function does $h_{\beta}(x)$ approach in the limit when $\beta \rightarrow \infty$?
d) Expanding the arbitrary function $f(x)$ in a Taylor series around $x=0$, evaluate the integral $\int_{-\infty}^{\infty} f(x) h_{\beta}(x) \mathrm{d} x$ in the limit when $\beta \rightarrow \infty$.

Hint: $\int_{0}^{\infty} x^{n} \exp (-\alpha x) \mathrm{d} x=\frac{n!}{\alpha^{n+1}}$;
$\operatorname{Re}(\alpha)>0, \quad n=0,1,2, \ldots$
(G\&R 3.351-3),

$$
n!=1 \cdot 2 \cdot 3 \cdots n, \text { with } 0!\text { defined as } 1 \text {. }
$$

$$
\int_{0}^{\infty} x^{2 n} \exp \left(-\beta x^{2}\right) \mathrm{d} x=\frac{(2 n-1)!!\sqrt{\pi}}{2^{n+1} \beta^{n+\frac{1}{2}}} ; \quad \beta>0, \quad n=0,1,2, \ldots
$$

(G\&R 3.461-2),
$(2 n-1)!!=1 \cdot 3 \cdot 5 \cdot 7 \cdots(2 n-1) ;$ for $n=0,(2 n-1)!!$ is defined as 1 .
Problem 2) A spherical shell of radius R and uniform surface-charge-density $\sigma_{\text {so }}$ spins around the z-axis at a constant angular velocity ω_{0}.
a) Find the total charge Q and the magnetic dipole moment m_{z} of the spinning shell.
b) The electric and magnetic fields inside and outside the shell are known to be

$$
\boldsymbol{E}(\boldsymbol{r})=\left\{\begin{array}{ll}
\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\boldsymbol{r}} ; & r>R, \\
0 ; & r<R .
\end{array} \quad \boldsymbol{B}(\boldsymbol{r})= \begin{cases}\frac{m_{z}(2 \cos \theta \hat{\boldsymbol{r}}+\sin \theta \hat{\boldsymbol{\theta}})}{4 \pi r^{3}} ; & r>R \\
\frac{2}{3} \frac{m_{z}}{\left(4 \pi R^{3} / 3\right)} \hat{\mathbf{z}} ; & r<R\end{cases}\right.
$$

Determine the total energy associated with the E - and H-fields, and also the electromagnetic angular momentum \mathcal{L}_{z} of the spinning shell.
Hint: $\int_{0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta=\frac{4}{3}$.

Problem 3) A monochromatic plane-wave of frequency ω arrives from free space at the surface of a plasma-like medium at the oblique incidence angle θ. The incident beam is s-polarized, and the medium is specified by its permeability $\mu(\omega)=1.0$ and permittivity $\varepsilon(\omega)=1-\left(\omega_{p} / \omega\right)^{2}$. At frequencies below the plasma frequency ω_{p}, the dielectric function of the medium is negative-valued and, therefore, its purely imaginary refractive index may be written as $\operatorname{in}(\omega)$, where $n(\omega)$ is real and positive.

c) Show that the reflectance of the plasma-like medium is 100% at all angles of incidence.

2 Pts
d) What is the penetration-depth of the fields into the plasma-like medium? Is there energy stored in these fields? What is the time-averaged Poynting vector in the plasma-like medium?

Problem 4) A monochromatic plane-wave arrives at the interface between a glass prism and air at the oblique angle $\theta>\theta_{c}$, as shown. The incident beam is p-polarized, and the prism material has $\mu(\omega)=1$ and $\varepsilon(\omega)=n^{2}(\omega)$, with $n(\omega)>1$ being the real-valued refractive index of the prism at the frequency ω of the incident beam.

Evanescent wave
a) Write expressions for the incident, reflected, and transmitted plane-waves, specifying the various components of the E - and H-fields in terms of the corresponding E-field component along the x-axis.
3 Pts b) Match the boundary conditions at the interface to derive the E - and H-fields of the evanescent wave in terms of $\theta, n(\omega)$, and the incident E-field amplitude $E_{x 0}{ }^{\mathrm{i}}$.

4 Pts
a) Write expressions for the incident, reflected, and transmitted plane-waves, specifying the various components of the E - and H -fields in terms of the corresponding E-field component along the y-axis.
b) Match the boundary conditions at the surface to determine the E - and H-fields of the reflected and transmitted waves in terms of $\theta, n(\omega)$, and the incident E-field amplitude $E_{y 0}{ }^{i}$.
c) Calculate the total time-averaged stored energy (per unit-area of the interface) in the E - and H - fields of the evanescent wave.

