Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.
Problem 1) A p-polarized monochromatic plane-wave is incident from free-space at the surface of a transparent, semi-infinite, dielectric medium of refractive index n. (As usual, we are assuming $\mu=1.0$ at optical frequencies.) At the Brewster incidence angle, where $\theta=\theta_{\mathrm{B}}$, the reflected beam disappears.
a) Write expressions for the E - and H-field distributions for both the incident and transmitted beams at $\theta=\theta_{\mathrm{B}}$.
b) Match the boundary conditions to determine the
 transmitted E - and H-field amplitudes in terms of the incident E-field amplitude.
c) Verify the continuity of the perpendicular D-field at the vacuum-dielectric interface.
d) Using the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$, show that the rate-of-flow of energy in the incident beam is precisely equal to that in the transmitted beam.
e) Find the distribution of the bound surface-charge-density $\sigma_{s}^{(b o u n d)}(x, y, z=0, t)$ at the interface between free-space and the transparent medium.

Problem 2) A linearly-polarized monochromatic plane-wave arrives from free-space at normal incidence at the surface of an absorptive dielectric. The dielectric has thickness d and refractive index $n=n^{\prime}+\mathrm{i} n^{\prime \prime}$, where both n^{\prime} and $n^{\prime \prime}$ are positive. (It is assumed that $\mu=1.0$ at optical frequencies.) The bottom of the dielectric is coated with a perfect conductor, as shown.
a) Write expressions for the E - and H-fields of the incident plane-wave in the region $z \geq d$.

b) Write expressions for the E - and H -fields of the reflected plane-wave in the region $z \geq d$.
c) Express the E - and H-fields inside the absorptive dielectric $(0 \leq z \leq d)$ as a superposition of two plane-waves, one propagating downward, the other upward. (Your field profiles must satisfy the boundary conditions at $z=0$.)
d) Match the boundary conditions at $z=d$, and determine the amplitudes of the reflected and transmitted beams as functions of $E_{x 0}^{i}$.

4 Pts e) Use the Poynting vector at $z=d^{-}$to determine the time-averaged rate of absorption of energy in the dielectric material.

Problem 3) A homogeneous plane-wave is incident at the interface between two transparent media at an oblique incidence angle θ. The incidence and transmittance media are specified by their parameters ($\mu_{\mathrm{a}}, \varepsilon_{\mathrm{a}}$) and ($\mu_{\mathrm{b}}, \varepsilon_{\mathrm{b}}$), respectively. For each medium, transparency dictates that μ and ε are real-valued, either both positive or both negative.
4 Pts a) Find an expression for the squared tangent of the Brewster angle, $\tan ^{2} \theta_{\mathrm{Bp}}$, in terms of $\mu_{\mathrm{a}}, \varepsilon_{\mathrm{a}}, \mu_{\mathrm{b}}$,
 and ε_{b}. (Note: θ_{Bp} is the incidence angle at which ρ_{p}, the Fresnel reflection coefficient for p -polarized light, vanishes.)

4 Pts
b) Repeat part (a) for s-polarized light by finding an expression for $\tan ^{2} \theta_{\mathrm{Bs}}$.

6 Pts c) Is it possible to have a set of parameters $\left(\mu_{\mathrm{a}}, \varepsilon_{\mathrm{a}}\right)$ and $\left(\mu_{\mathrm{b}}, \varepsilon_{\mathrm{b}}\right)$, as described above, for which two Brewster's angles exist, one for p-light and another for s-light? Explain.

Hint: The Fresnel reflection coefficients for p- and s-polarized light are given by

$$
\begin{aligned}
& \rho_{\mathrm{p}}=E_{x 0}^{\mathrm{r}} / E_{x 0}^{\mathrm{i}}=\frac{\varepsilon_{\mathrm{a}} \sqrt{\mu_{\mathrm{b}} \varepsilon_{\mathrm{b}}-\left(c k_{x} / \omega\right)^{2}}-\varepsilon_{\mathrm{b}} \sqrt{\mu_{\mathrm{a}} \varepsilon_{\mathrm{a}}-\left(c k_{x} / \omega\right)^{2}}}{\varepsilon_{\mathrm{a}} \sqrt{\mu_{\mathrm{b}} \varepsilon_{\mathrm{b}}-\left(c k_{x} / \omega\right)^{2}}+\varepsilon_{\mathrm{b}} \sqrt{\mu_{\mathrm{a}} \varepsilon_{\mathrm{a}}-\left(c k_{x} / \omega\right)^{2}}}, \\
& \rho_{\mathrm{s}}=E_{y_{0}}^{\mathrm{r}} / E_{y_{0}}^{\mathrm{i}}=\frac{\mu_{\mathrm{b}} \sqrt{\mu_{\mathrm{a}} \varepsilon_{\mathrm{a}}-\left(c k_{x} / \omega\right)^{2}}-\mu_{\mathrm{a}} \sqrt{\mu_{\mathrm{b}} \varepsilon_{\mathrm{b}}-\left(c k_{x} / \omega\right)^{2}}}{\mu_{\mathrm{b}} \sqrt{\mu_{\mathrm{a}} \varepsilon_{\mathrm{a}}-\left(c k_{x} / \omega\right)^{2}}+\mu_{\mathrm{a}} \sqrt{\mu_{\mathrm{b}} \varepsilon_{\mathrm{b}}-\left(c k_{x} / \omega\right)^{2}}}
\end{aligned}
$$

