Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A p-polarized monochromatic plane-wave is incident from free-space at the surface of a transparent, semi-infinite, dielectric medium of refractive index *n*. (As usual, we are assuming $\mu = 1.0$ at optical frequencies.) At the Brewster incidence angle, where $\theta = \theta_{\rm B}$, the reflected beam disappears.

- 4 Pts a) Write expressions for the *E* and *H*-field distributions for both the incident and transmitted beams at $\theta = \theta_{\rm B}$.
- 4 Pts b) Match the boundary conditions to determine the transmitted *E* and *H*-field amplitudes in terms of the incident *E*-field amplitude.
- 3 Pts c) Verify the continuity of the perpendicular *D*-field at the vacuum-dielectric interface.
- 4 Pts d) Using the time-averaged Poynting vector $\langle S(r, t) \rangle$, show that the rate-of-flow of energy in the incident beam is precisely equal to that in the transmitted beam.
- 3 Pts e) Find the distribution of the *bound* surface-charge-density $\sigma_s^{(bound)}(x, y, z=0, t)$ at the interface between free-space and the transparent medium.

Problem 2) A linearly-polarized monochromatic plane-wave arrives from free-space at normal incidence at the surface of an absorptive dielectric. The dielectric has thickness *d* and refractive index n=n'+in'', where both *n'* and *n''* are positive. (It is assumed that $\mu=1.0$ at optical frequencies.) The bottom of the dielectric is coated with a perfect conductor, as shown.

- 3 Pts a) Write expressions for the *E* and *H*-fields of the incident plane-wave in the region $z \ge d$.
- 3 Pts b) Write expressions for the *E* and *H*-fields of the reflected plane-wave in the region $z \ge d$.
- 4 Pts c) Express the *E* and *H*-fields inside the absorptive dielectric $(0 \le z \le d)$ as a superposition of two plane-waves, one propagating downward, the other upward. (Your field profiles must satisfy the boundary conditions at z=0.)
- 4 Pts d) Match the boundary conditions at z=d, and determine the amplitudes of the reflected and transmitted beams as functions of E_{xo}^{i} .

Continued on the reverse side ...

4 Pts e) Use the Poynting vector at $z=d^-$ to determine the time-averaged rate of absorption of energy in the dielectric material.

Problem 3) A homogeneous plane-wave is incident at the interface between two *transparent* media at an oblique incidence angle θ . The incidence and transmittance media are specified by their parameters (μ_a, ε_a) and (μ_b, ε_b) , respectively. For each medium, transparency dictates that μ and ε are real-valued, either both positive or both negative.

4 Pts a) Find an expression for the squared tangent of the Brewster angle, $\tan^2 \theta_{Bp}$, in terms of $\mu_a, \varepsilon_a, \mu_b$, and ε_b . (**Note**: θ_{Bp} is the incidence angle at which ρ_p , the Fresnel reflection coefficient for p-polarized light, vanishes.)

- 4 Pts b) Repeat part (a) for s-polarized light by finding an expression for $\tan^2 \theta_{Bs}$.
- 6 Pts c) Is it possible to have a set of parameters (μ_a, ε_a) and (μ_b, ε_b), as described above, for which two Brewster's angles exist, one for p-light and another for s-light? Explain.

Hint: The Fresnel reflection coefficients for p- and s-polarized light are given by

$$\rho_{\rm p} = E_{xo}^{\rm r} / E_{xo}^{\rm i} = \frac{\varepsilon_{\rm a} \sqrt{\mu_{\rm b} \varepsilon_{\rm b} - (ck_x/\omega)^2} - \varepsilon_{\rm b} \sqrt{\mu_{\rm a} \varepsilon_{\rm a} - (ck_x/\omega)^2}}{\varepsilon_{\rm a} \sqrt{\mu_{\rm b} \varepsilon_{\rm b} - (ck_x/\omega)^2} + \varepsilon_{\rm b} \sqrt{\mu_{\rm a} \varepsilon_{\rm a} - (ck_x/\omega)^2}},$$

$$\rho_{\rm s} = E_{yo}^{\rm r} / E_{yo}^{\rm i} = \frac{\mu_{\rm b} \sqrt{\mu_{\rm a} \varepsilon_{\rm a} - (ck_x/\omega)^2} - \mu_{\rm a} \sqrt{\mu_{\rm b} \varepsilon_{\rm b} - (ck_x/\omega)^2}}{\mu_{\rm b} \sqrt{\mu_{\rm a} \varepsilon_{\rm a} - (ck_x/\omega)^2} + \mu_{\rm a} \sqrt{\mu_{\rm b} \varepsilon_{\rm b} - (ck_x/\omega)^2}}.$$