Problem 1) a) $\mathcal{F}\{\operatorname{Rect}(t)\}=\int_{-\infty}^{\infty} \operatorname{Rect}(t) e^{\mathrm{i} \omega t} \mathrm{~d} t=\int_{-1 / 2}^{1 / 2} e^{\mathrm{i} \omega t} \mathrm{~d} t=\left.(\mathrm{i} \omega)^{-1} e^{\mathrm{i} \omega t}\right|_{t=-1 / 2} ^{1 / 2}=\frac{e^{1 / 2 \mathrm{i} \omega}-e^{-1 / 2 \mathrm{i} \omega}}{\mathrm{i} \omega}$

$$
=(2 / \omega) \sin (\omega / 2)=\frac{\sin (\pi \omega / 2 \pi)}{\pi \omega / 2 \pi}=\operatorname{sinc}(\omega / 2 \pi)
$$

b) $\mathcal{F}\{f(t / \alpha)\}=\int_{-\infty}^{\infty} f(t / \alpha) e^{\mathrm{i} \omega t} \mathrm{~d} t=\alpha \int_{\mp \infty}^{ \pm \infty} f\left(t^{\prime}\right) e^{\mathrm{i} \alpha \omega t^{\prime}} \mathrm{d} t^{\prime} \leftarrow$ change of variable: $t^{\prime}=t / \alpha$

$$
=|\alpha| \int_{-\infty}^{\infty} f\left(t^{\prime}\right) e^{\mathrm{i} \alpha \omega t^{\prime}} \mathrm{d} t^{\prime}=|\alpha| F(\alpha \omega) . \leftarrow \text { sign of } \alpha \text { is used to change } \int_{+\infty}^{-\infty} \cdots \text { to } \int_{-\infty}^{+\infty} \cdots
$$

c) $\mathcal{F}\{g(t)\}=\left[T_{1} \operatorname{sinc}\left(T_{1} \omega / 2 \pi\right)-T_{2} \operatorname{sinc}\left(T_{2} \omega / 2 \pi\right)\right] / \Delta T$

$$
\begin{aligned}
& =\left[\frac{T / 1 / \sin \left(T_{1} \omega / 2\right)}{T / 1 \omega / 2}-\frac{T / 2 \sin \left(T_{2} \omega / 2\right)}{T / 2 / 2}\right] / \Delta T=\frac{2}{\omega \Delta T}\left[\sin \left(T_{1} \omega / 2\right)-\sin \left(T_{2} \omega / 2\right)\right] \\
& =\frac{4 \sin \left[\left(T_{1}-T_{2}\right) \omega / 4\right] \cos \left[\left(T_{1}+T_{2}\right) \omega / 4\right]}{\omega \Delta T}=\frac{4 \sin (\omega \Delta T / 2) \cos \left(T_{0} \omega / 2\right)}{\omega \Delta T} .
\end{aligned}
$$

d) The function $g(t)$ is plotted below (on the right-hand side) as the difference between two rectangular pulses having widths T_{1} and T_{2}. In the limit when $\Delta T \rightarrow 0$, the function approaches a pair of δ-functions; that is, $g_{0}(t)=\delta\left(t-1 / 2 T_{0}\right)+\delta\left(t+1 / 2 T_{0}\right)$.

e) In the limit when $\Delta T \rightarrow 0$, the Fourier transform of $g(t)$ computed in part (c) approaches $2 \cos \left(1 / 2 T_{0} \omega\right)$, because $\sin (\omega \Delta T / 2) \rightarrow \omega \Delta T / 2$. Given that $\mathcal{F}\left\{\delta\left(t \pm 1 / 2 T_{0}\right)\right\}=\exp \left(\mp 1 / 2 \mathrm{i} T_{0} \omega\right)$, it is clear that $\mathcal{F}\left\{g_{0}(t)\right\}$ should be the sum of these two exponentials, namely, $2 \cos \left(1 / 2 T_{0} \omega\right)$.

Problem 2) a) $\rho(\boldsymbol{r}, t)=\sigma_{0} \delta(r-R)$. Note that the units of σ_{0} are [coulomb/ m^{2}], whereas those of $\rho(\boldsymbol{r}, t)$ are [coulomb $/ \mathrm{m}^{3}$]. This is due to the fact that $\delta(r-R)$ has the units of $[1 / \mathrm{m}]$.
b)

$$
\begin{aligned}
\rho(\boldsymbol{k}, \omega) & =\int_{-\infty}^{\infty} \sigma_{0} \delta(r-R) \exp [-\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \mathrm{d} \boldsymbol{r} \mathrm{~d} t \text { volume of the ring around the } k \text {-vector }_{\text {vol }} \\
& =\sigma_{0} \int_{-\infty}^{\infty} e^{\mathrm{i} \omega t} \mathrm{~d} t \int_{r=0}^{\infty} \delta(r-R) \int_{\theta=0}^{\pi} \exp (-\mathrm{i} k r \cos \theta) \overbrace{2 \pi r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} r} \\
& =\left.(2 \pi)^{2} \sigma_{0} \delta(\omega) \int_{r=0}^{\infty} \delta(r-R)(r / \mathrm{i} k) \exp (-\mathrm{i} k r \cos \theta)\right|_{\theta=0} ^{\pi} \mathrm{d} r \\
& =4 \pi^{2} \sigma_{0} \delta(\omega) \int_{r=0}^{\infty} \delta(r-R)(r / \mathrm{i} k)\left(e^{\mathrm{i} k r}-e^{-\mathrm{i} k r}\right) \mathrm{d} r \\
& =8 \pi^{2} \sigma_{0} \delta(\omega) \int_{r=0}^{\infty} \delta(r-R)(r / k) \sin (k r) \mathrm{d} r \leftarrow \text { use sifting property of } \delta(r-R) \\
& =8 \pi^{2} \sigma_{0} R^{2} \delta(\omega) \sin (k R) /(k R) .
\end{aligned}
$$

c) $\quad \psi(\boldsymbol{k}, \omega)=\frac{\rho(\boldsymbol{k}, \omega)}{\varepsilon_{0}\left[k^{2}-(\omega / c)^{2}\right]}$.
d) $\quad \psi(\boldsymbol{r}, t)=(2 \pi)^{-4} \int_{-\infty}^{\infty} \psi(\boldsymbol{k}, \omega) \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \mathrm{d} \boldsymbol{k} \mathrm{d} \omega$

$$
=(2 \pi)^{-4} \int_{-\infty}^{\infty} \frac{8 \pi^{2} \sigma_{0} R^{2} \delta(\omega) \sin (k R) /(k R)}{\varepsilon_{0}\left[k^{2}-(\omega / c)^{2}\right]} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \mathrm{d} \boldsymbol{k} \mathrm{~d} \omega
$$

$$
=\frac{\sigma_{0} R}{2 \pi^{2} \varepsilon_{0}} \int_{-\infty}^{\infty} k^{-3} \sin (k R) \exp (\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}) \mathrm{d} \boldsymbol{k} \quad \text { volume of the ring around the } r \text {-vector }
$$

$$
=\frac{\sigma_{0} R}{2 \pi^{2} \varepsilon_{0}} \int_{k=0}^{\infty} \int_{\theta=0}^{\pi} k^{-3} \sin (k R) \exp (\mathrm{i} k r \cos \theta) \overbrace{2 \pi k^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} k}
$$

$$
=\frac{\sigma_{0} R}{\pi \varepsilon_{0}} \int_{k=0}^{\infty} k^{-2} \sin (k R) \int_{\theta=0}^{\pi} k \sin \theta \exp (\mathrm{i} k r \cos \theta) \mathrm{d} \theta \mathrm{~d} k
$$

$$
=\left.\frac{\mathrm{i} \sigma_{0} R}{\pi \varepsilon_{0} r} \int_{k=0}^{\infty} k^{-2} \sin (k R) \exp (\mathrm{i} k r \cos \theta)\right|_{\theta=0} ^{\pi} \mathrm{d} k
$$

$$
=\frac{2 \sigma_{0} R}{\pi \varepsilon_{0} r} \int_{k=0}^{\infty} k^{-2} \sin (k R) \sin (k r) \mathrm{d} k \notin \text { G\&R 3.741-3 }
$$

$$
=\frac{2 \sigma_{0} R}{\pi \varepsilon_{0} r}\left\{\begin{array}{ll}
\pi r / 2 ; & r \leq R \\
\pi R / 2 ; & r \geq R
\end{array}= \begin{cases}\sigma_{0} R / \varepsilon_{0} ; & r \leq R \\
\sigma_{0} R^{2} /\left(\varepsilon_{0} r\right) ; & r \geq R\end{cases}\right.
$$

e) $\quad \boldsymbol{E}(\boldsymbol{r}, t)=-\nabla \psi(\boldsymbol{r}, t)-\partial \boldsymbol{A}(\boldsymbol{r}, t) / \partial t= \begin{cases}0 ; & r<R, \\ \sigma_{0} R^{2} \hat{\boldsymbol{r}} /\left(\varepsilon_{0} r^{2}\right) ; & r>R .\end{cases}$
f) The E-field inside the charged spherical shell is seen to be zero, whereas that outside the shell is $4 \pi R^{2} \sigma_{0} \hat{\boldsymbol{r}} /\left(4 \pi \varepsilon_{0} r^{2}\right)=Q \hat{\boldsymbol{r}} /\left(4 \pi \varepsilon_{0} r^{2}\right)$, where Q is the total charge content of the sphere. The discontinuity of the perpendicular E-field at the sphere's surface, where $r=R$, is $\sigma_{0} / \varepsilon_{0}$, in agreement with Maxwell's boundary condition.

Problem 3) a) In the absence of all four sources, Maxwell's equations for the EM fields $\boldsymbol{E}(\boldsymbol{r}, t)$ and $\boldsymbol{B}(\boldsymbol{r}, t)$ become

$$
\begin{array}{lll}
\boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho_{\text {free }} & \rightarrow & \boldsymbol{\nabla} \cdot \boldsymbol{E}=0, \\
\boldsymbol{\nabla} \times \boldsymbol{H}=\boldsymbol{J}_{\text {free }}+\partial \boldsymbol{D} / \partial t & \rightarrow & \boldsymbol{\nabla} \times \boldsymbol{B}=\mu_{0} \varepsilon_{0} \partial \boldsymbol{E} / \partial t, \\
\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t, & & \\
\boldsymbol{\nabla} \cdot \boldsymbol{B}=0 . & & \tag{4}
\end{array}
$$

b) The vector potential $\boldsymbol{A}(\boldsymbol{r}, t)$ is defined as a vector field whose curl equals the B-field; that is, $\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r}, t)=\boldsymbol{B}(\boldsymbol{r}, t)$. Given that the divergence of the curl of any vector field always equals zero, the preceding definition yields: $\boldsymbol{\nabla} \cdot \boldsymbol{B}=\boldsymbol{\nabla} \cdot[\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r}, t)]=0$. Consequently, this choice of the vector potential automatically satisfies Maxwell's $4^{\text {th }}$ equation.

The $3^{\text {rd }}$ of Maxwell's equations now becomes $\boldsymbol{\nabla} \times \boldsymbol{E}+\partial \boldsymbol{B} / \partial t=\boldsymbol{\nabla} \times(\boldsymbol{E}+\partial \boldsymbol{A} / \partial t)=0$. It is seen that $\boldsymbol{E}+\partial \boldsymbol{A} / \partial t$ is a curl-free field. Since the curl of the gradient of any scalar field
always vanishes, it must be clear that $\boldsymbol{E}+\partial \boldsymbol{A} / \partial t$ can be equated with the gradient of some (heretofore unknown) scalar field $\psi(\boldsymbol{r}, t)$.

Traditionally, $\boldsymbol{E}+\partial \boldsymbol{A} / \partial t$ has been equated with $-\boldsymbol{\nabla} \psi(\boldsymbol{r}, t)$, which is, of course, acceptable, considering that the minus sign thus introduced does not alter the required vanishing of the curl of $\boldsymbol{E}+\partial \boldsymbol{A} / \partial t$. One thus writes $\boldsymbol{E}+\partial \boldsymbol{A} / \partial t=-\boldsymbol{\nabla} \psi$, and proceeds to express the E-field in terms of the scalar potential ψ and the vector potential \boldsymbol{A} as $\boldsymbol{E}(\boldsymbol{r}, t)=-\boldsymbol{\nabla} \psi-\partial \boldsymbol{A} / \partial t$. By construction, this equation, in conjunction with the identity $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$, satisfies Maxwell's $3^{\text {rd }}$ equation.
c) Substituting the above $\boldsymbol{E}(\boldsymbol{r}, t)$ in Maxwell's (source-free) $1^{\text {st }}$ equation, $\boldsymbol{\nabla} \cdot \boldsymbol{E}=0$, we find

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \psi)+\partial(\boldsymbol{\nabla} \cdot \boldsymbol{A}) / \partial t=0 \tag{5}
\end{equation*}
$$

Similarly, substituting in Maxwell's $2^{\text {nd }}$ source-free equation for $\boldsymbol{E}(\boldsymbol{r}, t)$ and $\boldsymbol{B}(\boldsymbol{r}, t)$ in terms of the potentials, and also recalling that $\mu_{0} \varepsilon_{0}=1 / c^{2}$, one arrives at

$$
\begin{equation*}
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{A})=\mu_{0} \varepsilon_{0} \frac{\partial(-\nabla \psi-\partial \boldsymbol{A} / \partial t)}{\partial t} \quad \rightarrow \quad \boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{A})+\frac{1}{c^{2}}\left[\frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}+\boldsymbol{\nabla}\left(\frac{\partial \psi}{\partial t}\right)\right]=0 \tag{6}
\end{equation*}
$$

Equations (5) and (6) are the coupled pair of partial differential equations that relate the (source-free) scalar and vector potentials to each other.
d) The Lorenz gauge $\boldsymbol{\nabla} \cdot \boldsymbol{A}+c^{-2}(\partial \psi / \partial t)=0$ may now be used to decouple Eqs.(5) and (6). In the case of Eq.(5), we replace $\boldsymbol{\nabla} \cdot \boldsymbol{A}$ with $-c^{-2}(\partial \psi / \partial t)$, and in the case of Eq.(6), we substitute $-c^{2} \boldsymbol{\nabla} \cdot \boldsymbol{A}$ for $\partial \psi / \partial t$. We thus find

$$
\begin{gather*}
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \psi)=\frac{\partial^{2} \psi(\boldsymbol{r}, t)}{c^{2} \partial t^{2}} \tag{7}\\
\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{A})-\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{A})=\frac{\partial^{2} \boldsymbol{A}(\boldsymbol{r}, t)}{c^{2} \partial t^{2}} . \tag{8}
\end{gather*}
$$

These are the decoupled partial differential equations for $\psi(\boldsymbol{r}, t)$ and $\boldsymbol{A}(\boldsymbol{r}, t)$, respectively.
e) In the Fourier domain, the $\boldsymbol{\nabla}$ operator becomes $\mathrm{i} \boldsymbol{k}$, while the $\partial / \partial t$ operator changes to $-\mathrm{i} \omega$. Thus, Eq.(7), Eq.(8), and the aforementioned Lorenz gauge equation become

$$
\begin{array}{ll}
& \mathrm{i} \boldsymbol{k} \cdot \mathrm{i} \boldsymbol{k} \psi(\boldsymbol{k}, \omega)=c^{-2}(-\mathrm{i} \omega)^{2} \psi(\boldsymbol{k}, \omega) \quad \rightarrow \quad\left[k^{2}-(\omega / c)^{2}\right] \psi(\boldsymbol{k}, \omega)=0 . \\
& \mathrm{i} \boldsymbol{k}[\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{A}(\boldsymbol{k}, \omega)]-\mathrm{i} \boldsymbol{k} \times[\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}(\boldsymbol{k}, \omega)]=c^{-2}(-\mathrm{i} \omega)^{2} \boldsymbol{A}(\boldsymbol{k}, \omega) \\
\rightarrow \quad-(\boldsymbol{k} \cdot \boldsymbol{A}) \boldsymbol{k}+(\boldsymbol{k} \cdot \boldsymbol{A}) \boldsymbol{k}-(\boldsymbol{k} \cdot \boldsymbol{k}) \boldsymbol{A}=-(\omega / c)^{2} \boldsymbol{A} \quad \rightarrow \quad\left[k^{2}-(\omega / c)^{2}\right] \boldsymbol{A}(\boldsymbol{k}, \omega)=0 . \\
& \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{A}(\boldsymbol{k}, \omega)+c^{-2}(-\mathrm{i} \omega) \psi(\boldsymbol{k}, \omega)=0 \quad \rightarrow \quad \boldsymbol{k} \cdot \boldsymbol{A}(\boldsymbol{k}, \omega)-\left(\omega / c^{2}\right) \psi(\boldsymbol{k}, \omega)=0 .
\end{array}
$$

f) According to Eq.(11), the Lorenz gauge requires the projection onto \boldsymbol{k} of $\boldsymbol{A}(\boldsymbol{k}, \omega)$, commonly written as $\boldsymbol{A}_{\|}(\boldsymbol{k}, \omega)$, to satisfy the following relation with $\psi(\boldsymbol{k}, \omega): \boldsymbol{A}_{\|}=\omega \psi \widehat{\boldsymbol{k}} /\left(c^{2} k\right)$. However, such a constraint on $\boldsymbol{A}_{\|}$in no way modifies, or otherwise affects, the original definition of $\boldsymbol{A}(\boldsymbol{r}, t)$ as a vector field whose curl must equal $\boldsymbol{B}(\boldsymbol{r}, t)$. The reason is that, in the Fourier domain, the vector potential must relate to the B-field in the following way:

$$
\begin{equation*}
\boldsymbol{B}(\boldsymbol{k}, \omega)=\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}(\boldsymbol{k}, \omega)=\mathrm{i} \boldsymbol{k} \times\left(\boldsymbol{A}_{\|}+A_{\perp}\right)=\mathrm{i} \boldsymbol{k} \times \widehat{A_{\|}}+\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}_{\perp}=\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}_{\perp} \tag{12}
\end{equation*}
$$

Clearly, it is only the projection of $\boldsymbol{A}(\boldsymbol{k}, \omega)$ in a plane perpendicular to \boldsymbol{k} that is needed to specify the B-field. As such, the projection of $\boldsymbol{A}(\boldsymbol{k}, \omega)$ onto \boldsymbol{k}, which is constrained by the Lorenz gauge, plays no role in the original definition of $\boldsymbol{A}(\boldsymbol{r}, t)$ in connection with the B-field.
g) According to Eqs.(9) and (10), both $\psi(\boldsymbol{k}, \omega)$ and $\boldsymbol{A}(\boldsymbol{k}, \omega)$ will be zero unless $k^{2}=(\omega / c)^{2}$. Since the squared length of the vector \boldsymbol{k} is given by $\boldsymbol{k} \cdot \boldsymbol{k}=k^{2}$, one concludes that the only way to have nonzero solutions for $\psi(\boldsymbol{k}, \omega)$ and $\boldsymbol{A}(\boldsymbol{k}, \omega)$ is to demand that EM plane-waves in free space satisfy the condition $|\boldsymbol{k}|=\omega / c$.
h) Transforming $\boldsymbol{B}(\boldsymbol{r}, t)=\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r}, t)$ to the Fourier domain yields $\boldsymbol{B}(\boldsymbol{k}, \omega)=\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}(\boldsymbol{k}, \omega)$, which shows that $\boldsymbol{B}(\boldsymbol{k}, \omega)$ must be located in a plane perpendicular to the k-vector.
i) Transforming $\boldsymbol{E}(\boldsymbol{r}, t)=-\nabla \psi(\boldsymbol{r}, t)-\partial \boldsymbol{A}(\boldsymbol{r}, t) / \partial t$ to the Fourier domain yields $\boldsymbol{E}(\boldsymbol{k}, \omega)=$ $-\mathrm{i} \boldsymbol{k} \psi(\boldsymbol{k}, \omega)+\mathrm{i} \omega \boldsymbol{A}(\boldsymbol{k}, \omega)$. Upon substitution for $\psi(\boldsymbol{k}, \omega)$ from the Lorenz gauge equation, Eq.(11), we find

$$
\begin{equation*}
\boldsymbol{E}(\boldsymbol{k}, \omega)=\mathrm{i} \omega\{\boldsymbol{A}(\boldsymbol{k}, \omega)-[(c \boldsymbol{k} / \omega) \cdot \boldsymbol{A}(\boldsymbol{k}, \omega)](c \boldsymbol{k} / \omega)\} \tag{13}
\end{equation*}
$$

It was shown in part (g) that, for plane-waves in free space, $|\boldsymbol{k}|=\omega / c$. Consequently, $c \boldsymbol{k} / \omega=\widehat{\boldsymbol{k}}$ (i.e., the unit-vector along \boldsymbol{k}), and $[\widehat{\boldsymbol{k}} \cdot \boldsymbol{A}(\boldsymbol{k}, \omega)] \widehat{\boldsymbol{k}}=\boldsymbol{A}_{\|}(\boldsymbol{k}, \omega)$, which is the component of $\boldsymbol{A}(\boldsymbol{k}, \omega)$ that is parallel to \boldsymbol{k}. We may now write Eq.(13) in simplified form, as follows:

$$
\begin{equation*}
\boldsymbol{E}(\boldsymbol{k}, \omega)=\mathrm{i} \omega\left[\boldsymbol{A}(\boldsymbol{k}, \omega)-\boldsymbol{A}_{\|}(\boldsymbol{k}, \omega)\right]=\mathrm{i} \omega \boldsymbol{A}_{\perp}(\boldsymbol{k}, \omega) \tag{14}
\end{equation*}
$$

Here, $\boldsymbol{A}_{\perp}(\boldsymbol{k}, \omega)$ is the projection of $\boldsymbol{A}(\boldsymbol{k}, \omega)$ in a plane perpendicular to \boldsymbol{k}. It is thus seen that $\boldsymbol{E}(\boldsymbol{k}, \omega)$ is orthogonal to \boldsymbol{k}. Moreover, since $\boldsymbol{B}(\boldsymbol{k}, \omega)=\mathrm{i} \boldsymbol{k} \times\left[\boldsymbol{A}_{\|}(\boldsymbol{k}, \omega)+\boldsymbol{A}_{\perp}(\boldsymbol{k}, \omega)\right]=\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}_{\perp}(\boldsymbol{k}, \omega)$, we conclude that $\boldsymbol{E}(\boldsymbol{k}, \omega)$ and $\boldsymbol{B}(\boldsymbol{k}, \omega)$ are also orthogonal to each other.
j) Substitution for $\boldsymbol{A}_{\perp}(\boldsymbol{k}, \omega)$ from Eq.(14) into the preceding equation for $\boldsymbol{B}(\boldsymbol{k}, \omega)$ now yields

$$
\begin{equation*}
\boldsymbol{B}(\boldsymbol{k}, \omega)=\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}_{\perp}(\boldsymbol{k}, \omega)=\mathrm{i}(\omega / c) \widehat{\boldsymbol{k}} \times[\boldsymbol{E}(\boldsymbol{k}, \omega) / \mathrm{i} \omega]=\widehat{\boldsymbol{k}} \times \boldsymbol{E}(\boldsymbol{k}, \omega) / c \tag{15}
\end{equation*}
$$

It is seen that $\boldsymbol{B}(\boldsymbol{k}, \omega)$, which is orthogonal to both $\widehat{\boldsymbol{k}}$ and $\boldsymbol{E}(\boldsymbol{k}, \omega)$, has the same magnitude as $\boldsymbol{E}(\boldsymbol{k}, \omega) / c$. Needless to say, cross-multiplication of $\boldsymbol{E}(\boldsymbol{k}, \omega)$ into $\widehat{\boldsymbol{k}}$ is tantamount to a 90° rotation of $\boldsymbol{E}(\boldsymbol{k}, \omega)$ around $\widehat{\boldsymbol{k}}$.
k) In general, $\boldsymbol{B}(\boldsymbol{k}, \omega)=\mu_{0} \boldsymbol{H}(\boldsymbol{k}, \omega)+\boldsymbol{M}(\boldsymbol{k}, \omega)$. In the absence of the magnetization \boldsymbol{M}, the $H-$ field should be equal to the B-field divided by μ_{0}. Therefore, $\boldsymbol{H}(\boldsymbol{k}, \omega)=\widehat{\boldsymbol{k}} \times \boldsymbol{E}(\boldsymbol{k}, \omega) /\left(\mu_{0} c\right)=$ $\widehat{\boldsymbol{k}} \times \boldsymbol{E}(\boldsymbol{k}, \omega) / Z_{0}$. The plane-wave's H-field amplitude is thus obtained by a 90° rotation of $\boldsymbol{E}(\boldsymbol{k}, \omega)$ around $\widehat{\boldsymbol{k}}$, followed by division by Z_{0}.

