Opti 501 2" Midterm Solutions (10/28/2021) Time: 75 minutes

Problem 1) a) F{Rect(t)} = f_ozo Rect(t)e'“tdt = yz/zei“’tdt = (iw)tel®t|

1 elw _ o—%iw

- t=-1% iw

= (2/w)sin(w/2) = sin(rw/2m) _ sinc(w/2m).

Tw/2T

b) F{f(t/a)} = f:o f(t/a)e®tdt = a f;: f(t')eim”t,dt' <{ change of variable: t' = t/a |
= |a| f:o f(t’)ei“wt'dt’ = |a|F(aw). < sign of « is used to change f+_:-~ to f_+°:°-~-

¢) F{g(t)} = [T,sinc(T,w/2m) — T,sinc(T,w/2m)]|/AT

= [Heniors)  psnuar2)] jnp = 2 [sin(T0/2) ~ sin(T,w/2)]

THw/2 Tw/2
__ 4sin[(Ty-T)w/4] cos[(T1+T2)w/4] _ 4sin(wAT/2) cos(Tow/Z).
- wAT - wAT

d) The function g(t) is plotted below (on the right-hand side) as the difference between two
rectangular pulses having widths T, and T,. In the limit when AT — 0, the function approaches
a pair of §-functions; that is, g,(t) = §(t — ¥%T,) + 6(t + ¥%T,).
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¢) In the limit when AT — 0, the Fourier transform of g(t) computed in part (c) approaches
2 cos(¥.T,w), because sin(wAT /2) - wAT /2. Given that F{5(t + %.T,)} = exp(+%iT,w),
it is clear that F{g,(t)} should be the sum of these two exponentials, namely, 2 cos(%T,w).

Problem 2) a) p(r,t) = 0,6(r — R). Note that the units of g, are [coulomb/m?], whereas those
of p(r,t) are [coulomb/m3]. This is due to the fact that §(r — R) has the units of [1/m].

b) p(k w) = f_ozo 0,6(r — R) exp[—i(k - r — wt)] drdt | volume of the ring around the k-vector|

= g, f_°zo el@tdt f:o §(r—R) f::o exp(—ikr cos 9) 2mr? sin 6 d9dr
= (2m)?%0,6(w) f:o 8(r — R)(r/ik)exp(—ikr cos 8)|%_,dr

= 41%0,6(w) f:o5(r — R)(r/ik)(e'*" — e~k dr

= 8m%0,6(w) f:o 6(r — R)(r/k) sin(kr) dr <—| use sifting property of §(r — R) |

= 8m%0,R%*6(w) sin(kR)/(kR).



p(k,w)
c) Yk, w) = /T

d) Y(r,t) = 2m)~* f * Yk, w) expli(k - r — wt)] dkdw
use sifting property of §(w) |

2
- (2n)- j 82 JOR S(w)sm(kR)/(kR) expli(k - 7 — wt)] dkdw

olk?=(w/c)?]
_ _OoR 3
T 2m2g, f k™ sin(kR) eXp(lk r)dk | volume of the ring around the r-vector
= ZZ(;R fk . fg , k=3 sin(kR) exp(ikr cos 6) 21k? sin 6 dodk

= UOR f k=2 sin(kR) f k sin 6 exp(ikr cos ) dOdk

= ::Iif ~2sin(kR) exp(ikr cos 8)|%_,dk
_ 209R -2 . .
= e rf _ k% sin(kR) sin(kr) dk
_ZJOR{nr/Z; r<R _{O’OR/EO; r <R,
me" \tR/2; r =R o,R?/(e,r); 7T =R
0; r <R,
e) E(r,t) = —Vy(r,t) — 0A(r,t) /0t = {U R%F (612 s SR
0 0 ’ "

f) The E-field inside the charged spherical shell is seen to be zero, whereas that outside the shell
is 4mR%0,7/(4me,r?) = QF/(4me,r?), where Q is the total charge content of the sphere. The
discontinuity of the perpendicular E-field at the sphere’s surface, where r = R, is ag,/¢,, in
agreement with Maxwell’s boundary condition.

Problem 3) a) In the absence of all four sources, Maxwell’s equations for the EM fields E(r,t)
and B(r,t) become

VD = ppee - V-E=0, (1)
VXH=].. +0D/0t — VXB = u,s,0E/ot, (2)
VxXE=-0B/ot, 3)
V-B=0. 4)

b) The vector potential A(r,t) is defined as a vector field whose curl equals the B-field; that
is, V. X A(r,t) = B(r,t). Given that the divergence of the curl of any vector field always equals
zero, the preceding definition yields: V- B =V - [V X A(r,t)] = 0. Consequently, this choice of
the vector potential automatically satisfies Maxwell’s 4™ equation.

The 3" of Maxwell’s equations now becomes V X E + dB/dt = VX (E + 0A/0t) = 0. It
is seen that E + dA/0dt is a curl-free field. Since the curl of the gradient of any scalar field



always vanishes, it must be clear that E + dA/dt can be equated with the gradient of some
(heretofore unknown) scalar field ¥ (1, t).

Traditionally, E + dA/0dt has been equated with —V (7, t), which is, of course, acceptable,
considering that the minus sign thus introduced does not alter the required vanishing of the curl
of E + 0A/0dt. One thus writes E + 0A/dt = —V1, and proceeds to express the E-field in terms
of the scalar potential i and the vector potential A as E(r,t) = —Viy — dA/dt. By construction,
this equation, in conjunction with the identity B = V X A, satisfies Maxwell’s 3" equation.

c) Substituting the above E (1, t) in Maxwell’s (source-free) 1* equation, V - E = 0, we find
V-(WyY)+9d(V-A)/dt =0. 5)

Similarly, substituting in Maxwell’s 2™ source-free equation for E(r, t) and B(r, t) in terms
of the potentials, and also recalling that u,e, = 1/c?, one arrives at

a(~Vp—9A/dt)

VX (VXA =g, o

Px@xA)+5[22+7 ()| =0. ()

Equations (5) and (6) are the coupled pair of partial differential equations that relate the
(source-free) scalar and vector potentials to each other.

d) The Lorenz gauge V- A + ¢~%(dy/dt) = 0 may now be used to decouple Egs.(5) and (6). In
the case of Eq.(5), we replace V - A with —c~2(dy/0t), and in the case of Eq.(6), we substitute
—c2V - A for 9y /0t. We thus find

*P(rt)
v (vy) =220 (7)

02A(rt)
c2ot? ’ (8)

These are the decoupled partial differential equations for Y (r, t) and A(r,t), respectively.

V(V-4A) -V x(VxA)=

¢) In the Fourier domain, the V operator becomes ik, while the d/dt operator changes to -iw.
Thus, Eq.(7), Eq.(8), and the aforementioned Lorenz gauge equation become

ik-ikyp(k,w) = c?(—iw)*Y(k,w) - [k%? — (w/c)?*|Y(k,w) = 0. 9)
ik[ik - A(k, w)] — ik>$< [ik x A(k, w)] = ¢ ?(—iw)?A(k, w)
lax(bxc)=(a-c)b—(a-b)c|
- —(k-AK+ (k-AKk— (k-kK)A=—(0/c)’A - [k*—(w/c)*]A(k,w)=0. (10)
ik A(k ) + c (i)Y w) =0 - kAl w) — (w/c)P(k w) = 0. (11)

) According to Eq.(11), the Lorenz gauge requires the projection onto k of A(k, w), commonly
written as A, (k, w), to satisfy the following relation with Y(k, w): A, = wk/(c?k). However,
such a constraint on 4; in no way modifies, or otherwise affects, the original definition of A(r,t)
as a vector field whose curl must equal B(r,t). The reason is that, in the Fourier domain, the
vector potential must relate to the B-field in the following way:

B(k, ) = ik x Ak, ) = ik X (A; + A4)) = ikx7, +ik x A, = ik x 4,. (12)



Clearly, it is only the projection of A(k, w) in a plane perpendicular to k that is needed to
specify the B-field. As such, the projection of A(k,w) onto k, which is constrained by the
Lorenz gauge, plays no role in the original definition of A(7, t) in connection with the B-field.

g) According to Egs.(9) and (10), both (k, w) and A(k, w) will be zero unless k? = (w/c)?.
Since the squared length of the vector k is given by k - k = k?, one concludes that the only way
to have nonzero solutions for Y (k, w) and A(k, w) is to demand that EM plane-waves in free
space satisfy the condition |k| = w/c.

h) Transforming B(r,t) = V X A(r,t) to the Fourier domain yields B(k, w) = ik X A(k, ),
which shows that B(k, w) must be located in a plane perpendicular to the k-vector.

i) Transforming E(r,t) = —Vy(r,t) — 0A(r,t)/0t to the Fourier domain yields E(k, w) =
—iky(k, w) + iwA(k,w). Upon substitution for Y (k,w) from the Lorenz gauge equation,
Eq.(11), we find

E(k, w) = iw{A(k, ®) — [(ck/w) - A(k, w)](ck/w)}. (13)
It was shown in part (g) that, for plane-waves in free space, |k| = w/c. Consequently,

ck/w =k (i.e., the unit-vector along k), and [k - A(k, w)]k = A, (k, w), which is the component
of A(k, w) that is parallel to k. We may now write Eq.(13) in simplified form, as follows:

E(k, w) = iw[A(k, w) — A)(k, w)] = iwA, (k, w). (14)

Here, A, (k, w) is the projection of A(k, w) in a plane perpendicular to k. It is thus seen that
E(k, w) is orthogonal to k. Moreover, since B(k, w) = ik X [4,(k, w) + A, (k, w)] = ik X A, (k, w),
we conclude that E(k, w) and B(k, w) are also orthogonal to each other.

J) Substitution for 4, (k, w) from Eq.(14) into the preceding equation for B(k, w) now yields
B(k,w) =ik x A, (k,w) = i(w/c)k x [E(k,w)/iw] = k x E(k, w)/c. (15)

It is seen that B(k, ), which is orthogonal to both k and E(k, w), has the same magnitude as
E(k, w)/c. Needless to say, cross-multiplication of E(k, ) into k is tantamount to a 90° rotation
of E(k, w) around k.

k) In general, B(k,w) = u,H(k, w) + M(k, w). In the absence of the magnetization M, the H-
field should be equal to the B-field divided by p,. Therefore, H(k,w) = k x E(k, »)/(u,¢) =
k x E(k,w)/Z,. The plane-wave’s H-field amplitude is thus obtained by a 90° rotation of
E(k, w) around k, followed by division by Z,,.




