Opti 501 2"! Midterm Solutions (11/5/2020) Time: 75 minutes

Problem 1)a) P(r,t) =p,6(12z -  p& (r,t) = —V-P(r,t) = —p,6(x)5(»)8 ().

The figure shows a typical plot of §'(z) for a sufficiently
small value of the parameter a. The function is positive below,
and negative above, the origin. The minus sign in the above

@

®  reverses the sign of the function, so that

AZ

> 6'(2)

expression of p

bound ~7 " . . . al|®
the (bound) charge-density below the origin is negative, while ?
that above the origin is positive. This is consistent with our e

understanding that the dipole moment p,Z represents a pair of
positive and negative charges, with the negative charge slightly below, and the positive charge
slightly above, the origin. The area under each lobe of §'(z) is 1/, making the magnitude of
the pair of charges equal to +p,/a. Given that the charges are separated by a distance a along
the z-axis, as shown in the figure, their dipole moment is (p,/a)az = p,2.

~ _ _1 (OMz; ~ OMz ~
b) ME) =ms2 > Sy = 517 X M 1) = iy (Lo - Loz

= (m,/1e)[6(x)8"(y)6(2)x — 6" (x)6(y)6(2)y].

The figure below shows typical plots of 6'(x), 6'(y), and §(z) for sufficiently small values
of the a parameter. The current-density J g?und has components along the x and y axes, as shown
in the rightmost panel of the figure. The direction of the current along each of the four legs of the

loop is determined by whether the corresponding lobe of 6’ (x) or 6’ (y) is positive or negative.
Each triple-delta-function-product in the above expression of ],(J?und has a magnitude of 1/a*.
Integration over each leg’s cross-sectional area (a?) yields the loop current as I, = m,/(u,a?),
and multiplication by the loop area A = a? yields I,A = m,/u,. The magnetic dipole moment
m, along the z-axis is thus seen to be the product of p,, the loop current [, and the loop area A.
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¢) Invoking the sifting properties of §(-) and 6’ (), direct Fourier transformation of Pt(i?md (r,t)
and Ji,nq (T, £) yields Sifting property: |, £(©)8(0)d¢ = £(0) and |-, ()" (©)dS = —F'(0).
© (o w) = —p, [ 666" (2) expl—i(k - 7 — wt)] drdt = —i2mp,k,6(w). <)

pbound

JE e, @) = (mo/ 1) [ [6(x)8' (0)8(2)Z — §' ()8 ()8 (2)] expl—i(k - 7 — wt)] drdt
= izn(mo//lo)(ky’x\ — k¥)6(w).
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Alternatively, one could first evaluate the Fourier transforms of P(r,t) and M(r,t), then
calculate the Fourier transforms of the bound charge and current densities, as follows:

Pk w) = f_ozo .8 (r)z exp[—i(k - r — wt)] drdt = 2np,6 (w)2.

Mk, ) = f_ozo m,8(1)Zexp[—i(k r — wt)] drdt = 2rm,6(w)Z.

pl (k) = —ik - P(k,w) = —ik - 21p,6(w)2 = —i2mp, k,6 ().

JO e, w) = ik x ™Mk, ) = ik x 2m(m,/11,)8(w)2 = i2m(my/1,) (k& — ke 3)5 (w).

bound

Problem 2) a) In the limit when w, — 0, the oscillating current I, cos(w,t) approaches the
constant current /. In this limit,

sin(w,t) = w,t = 0; cos(wyt) = 1 — Y(w,t)? - 1;
Y,(pw,/c) = (2/m)[C + In(pw,/2c)]; Yi(pw,/c) = =2¢c/(mpw,).

Keeping in mind that lim,._,o(x In x) = 0, substitution into the expressions of the radiated E
and H fields now yields

E(r,t) - 0; H(r,t) - (I,/21p)@.

b) In the far field, where pw,/c = 2mp/1, > 1 (1, being the vacuum wavelength), one may write
Jo(pw,/c) = \[2¢/(mpw,) coslpw,/c — (w/N)]; ] (pw,/c) = \[2c/(mpw,) cos[pw,/c — (3m/4)];
Yy(pw,/c) = \[2¢/(mpw,) sinlpw,/c — (m/D)];  Y,(pw,/c) = [2¢/(mpw,) sin[pw,/c — Br/4)].

Substitution into the expressions of the radiated E and H fields yields

Zy = /e, = E(r,t) = —%(ZOIO/W) cos[w,(t — p/c) + (n/4)] 2,

H(r,t) = Y%(1,/\[A,p) cos[w,(t — p/c) + (/4)] .

These functions have the correct retarded form, with ¢, = m/4. The Poynting vector in the
far field is readily seen to be aligned with p and inversely proportional to p, as follows:

S(r,t) = E(r,t) X H(r, t) = %(Z,12/2,p) cos?*[w,(t — p/c) + (/4)] Pp.

Problem 3) In the Fourier domain, the Lorenz gauge equation is k - A(k, w) — (w/c?)yY(k, w) = 0.
Considering that A(k,w) = p, J(k,w)/[k? — (w/c)?], Y(k w) = p(k,w)/c,[k? — (w/c)?], and
c? = (upg,)~1, substitution into the Lorenz gauge equation yields k- J(k,w) — wp(k,w) =0,
which is the expression of charge-current continuity in the Fourier domain.

Problem 4) a) Given the charge-density p(r,t) = p,[sphere(r/R,) — sphere(r/R,)], we have

R2
p(k,w) = [~ p(r,t)e” ik T=90drde = 28 (w)p, f [ eIk ose2mr2 sin g drdg
| integration by parts | T=Rq

_ SnZSIEw)po fRRlz r sin(kr) dr y —8”261Ew)p0 [—(r/k) COS(kT‘)|I:§R1 + k7t fRRlz cos(kr) dr]
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_ 87T25(0J)p0 [sin(Rzk) —::k cos(Ryk) 51n(R1k) - lecos(le,)] (1)
p(kw) _ 8m28(w)py [sin(Rzk) — Ryk cos(Rzk) 51n(R1k) lecos(le)
by dk 0) = @/ T malii-w/o7] [ K ] @)

C) lp('l" t) — (27.[) 4f w(k w)el(k r- wt)dkd(l) = (27‘[) j % i(k-r—a)t)dkdw

[51n(R2k) R,k cos(R;k) 51n(R1k)—R1kcos(R1k)] eikr cos (pZTEkZ sin 0 dkd(p
27'[280 k>

f [sm(Rzk) Ryk cos(Ryk) 51n(R1k)—R1kcos(R1k)] sin(kr) dk

" megr k*

 2py {nr(3R22 -r?)/12; (<R, 2p {nr(BRZ -r?)/12; (r<R)

meo" \nR3/6; (r=R,) - meor R3/6 (r = R,).
Consequently,
RZ — R?; r <R,
Y(rt) =72 R} —%r? —%R}/r; R, <r <R, 3)
2R3 —R3)/7; r = R,.
d) The E-field inside and outside the shell is obtained from the above scalar potential, as follows:
0; r <R,
E(r,t) = —Vp(r,0) = —(0y/nF = L254r° —RY R ST <R, 4)
R3 — R3; r >R,

¢) Average E, within the shell’s wall = ( fRRlz Erdr) /(R, — R,)
——Po R\ g =—Po  [1(R2 — R2 s(L_ 1
- 380(R2—R1) Ll (r 7"2) dr 380(R2—R1) /Z(RZ Rl) + R1 (Rz Rl)]

Po(R3 = RoRE + 2R3 — 2RyRE) _ pol(R — RPR; — 2R{(R; — R)] _ po(Rz — R1)*(Rp+2R1)
6g0(Rz — R1)R; 6g0(Rz — R1)R; 6g0(Rz — R1)R;

_ Po(Ry —R1)(Rp +2Ry) (5)
- 6€0R2

f) The ratio of the average E, within the shell’s wall to the E-field at r = R is given by

average E; _ po(Rz - Rl)(RZ + 2R1)/6€0R2 _ Rz(Rz + 2R1)
E, immediately outside the shell po(R3 — R3)/3e0R2 2(R2 + RyRy + R%)

(6)

The above ratio approaches %2 when R, — R,.
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