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Problem 1)

a) The current-density J¢;Z of the inner cylinder produces a current-density (R;/p)Js1p in the
upper end-cap as the current leaves the inner cylinder and moves radially outward toward the
outer cylinder; here p is the radial distance from the cylinder axis. The current-density in the
outer cylinder is then given by Jo, = —(R,/R;)Js12. The current returns to the inner cylinder via
the lower end-cap, where the current-density —(R;/p)Js.p is equal in magnitude but opposite in
direction to that in the upper cap.

b) This is a magneto-static problem involving time-independent current and no charges;
therefore, there is no E-field and the magnetic field throughout the entire space is going to be
time-independent. Based on our knowledge of infinitely-long cylinders with a uniform current
flowing along their axis of symmetry, we suspect the magnetic field in the present problem to be
azimuthally directed within the cavity (i.e., in the region between the two cylinders), with a
magnitude that drops in proportion to the inverse of the distance p from the cylinder axis, that is,
H(r) = Hy®/p. The unknown constant H, is determined by matching the boundary conditions.
The H-field inside the inner cylinder (i.e., in the region p < R;) is expected to be zero.

Now, at the surface of the inner cylinder, the discontinuity in the H-field along @ will be
Hy/R;, which must be equal to the surface current-density J¢; along Z. Consequently, H, =
R; Js1. The magnetic field trapped in the region between the two cylinders is thus seen to be
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The magnitude of the above field is equal to the surface current-density of the outer cylinder
at p = R,, and also equal to the surface current-densities of the end-caps at z = +%L. The
orientation of the above H-field at the inner walls of the cavity is also consistent with Maxwell’s
boundary condition at these surfaces. It is thus seen that the H-field outside the cavity must
vanish everywhere for the boundary condition (i.e., H-field discontinuity = surface current-
density) to be satisfied at all four surfaces. We conclude that the magnetic field outside the cavity
IS zero everywhere.

Maxwell’s relevant equations for magnetostatics are V X H(r) = Jfee and V- B(r) = 0. In
the present problem, B(r) = uoH(r) everywhere. Outside the cavity, the H-field is zero, which
obviously satisfies both equations. Inside the cavity, J.ee = 0; therefore, both V- H(r) and
V x H(r) must vanish. We have
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Thus the magnetic field of Eq.(1) satisfies all the relevant equations of Maxwell. In addition,
when the H-field outside the cavity is assumed to be zero, the boundary conditions at the inner
walls of the cavity are simultaneously satisfied. The uniqueness of solutions of Maxwell’s
equations thus guarantees that the correct field distribution has been identified.




Problem 2)
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Using the Taylor series expansion of sine and cosine functions, we write
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Therefore, in the limit when r — 0, we have
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It is thus seen that A, (r,t) approaches zero when r — 0, and that, therefore, the vector
potential does not have a singularity at the origin.

b) In the Lorenz gauge, V - A + (1/c?) 0y /dt = 0. In the present problem, since ¥ (r,t) = 0, it
is sufficient to show that 7 - A = 0. Considering that the only component of A(r, t) is A, which
is independent of the azimuthal angle ¢, we have V- A = (r sin 9)-1aA(,,/a<p = 0. The Lorenz
gauge requirement is therefore satisfied.
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Since the time-averaged S(r, t) is zero, the electromagnetic energy is essentially stationary.
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c) Introducing the normalized parameters # = r/L and Z = z/L, the above equation may be
written as follows:
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In the limit when L — oo, both # and Z approach zero, and the above equation becomes

I,D( t) _ /'to 1n(2L) __Aglnr

2meg
The large constant containing In(2L) in the above expression does not contribute to the
gradient of the scalar potential. Therefore, the E-field of the infinitely-long rod is given by
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d) The Fourier transform of the charge-density distribution is given by
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Since the Fourier-transformed scalar potential is ¥ (k, w) = 5t p(k, w)/[k? — (w/c)?], its
inverse transform may now be evaluated as follows:
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and ry = xX + yy.
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The terms of the integrand
that contain cosines are odd
functions of k,; therefore,
their integrals vanish.
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This result is identical with that obtained in part (b), which was obtained using direct evaluation
in the spacetime domain.




