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Opti 501 2nd Midterm Solutions 11/10/2015 

Problem 1) 

a) The current-density 𝐽𝐽𝑠𝑠1𝒛𝒛� of the inner cylinder produces a current-density (𝑅𝑅1 𝜌𝜌⁄ )𝐽𝐽𝑠𝑠1𝝆𝝆� in the 
upper end-cap as the current leaves the inner cylinder and moves radially outward toward the 
outer cylinder; here 𝜌𝜌 is the radial distance from the cylinder axis. The current-density in the 
outer cylinder is then given by 𝑱𝑱𝑠𝑠2 = −(𝑅𝑅1 𝑅𝑅2⁄ )𝐽𝐽𝑠𝑠1𝒛𝒛�. The current returns to the inner cylinder via 
the lower end-cap, where the current-density −(𝑅𝑅1 𝜌𝜌⁄ )𝐽𝐽𝑠𝑠1𝝆𝝆� is equal in magnitude but opposite in 
direction to that in the upper cap. 
 
b) This is a magneto-static problem involving time-independent current and no charges; 
therefore, there is no 𝐸𝐸-field and the magnetic field throughout the entire space is going to be 
time-independent. Based on our knowledge of infinitely-long cylinders with a uniform current 
flowing along their axis of symmetry, we suspect the magnetic field in the present problem to be 
azimuthally directed within the cavity (i.e., in the region between the two cylinders), with a 
magnitude that drops in proportion to the inverse of the distance 𝜌𝜌 from the cylinder axis, that is, 
𝑯𝑯(𝒓𝒓) = 𝐻𝐻0𝝋𝝋�/𝜌𝜌. The unknown constant 𝐻𝐻0 is determined by matching the boundary conditions. 
The 𝐻𝐻-field inside the inner cylinder (i.e., in the region 𝜌𝜌 < 𝑅𝑅1) is expected to be zero. 

Now, at the surface of the inner cylinder, the discontinuity in the 𝐻𝐻-field along 𝝋𝝋�  will be 
𝐻𝐻0/𝑅𝑅1, which must be equal to the surface current-density 𝐽𝐽𝑠𝑠1 along 𝒛𝒛�. Consequently, 𝐻𝐻0 =
𝑅𝑅1 𝐽𝐽𝑠𝑠1. The magnetic field trapped in the region between the two cylinders is thus seen to be 

 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = �𝑅𝑅1𝐽𝐽𝑠𝑠1
𝜌𝜌
�𝝋𝝋�;             𝑅𝑅1 < 𝜌𝜌 < 𝑅𝑅2,   |𝑧𝑧| < ½𝐿𝐿. (1) 

The magnitude of the above field is equal to the surface current-density of the outer cylinder 
at 𝜌𝜌 = 𝑅𝑅2, and also equal to the surface current-densities of the end-caps at 𝑧𝑧 = ±½𝐿𝐿. The 
orientation of the above 𝐻𝐻-field at the inner walls of the cavity is also consistent with Maxwell’s 
boundary condition at these surfaces. It is thus seen that the 𝐻𝐻-field outside the cavity must 
vanish everywhere for the boundary condition (i.e., 𝐻𝐻-field discontinuity = surface current-
density) to be satisfied at all four surfaces. We conclude that the magnetic field outside the cavity 
is zero everywhere. 

Maxwell’s relevant equations for magnetostatics are 𝜵𝜵 × 𝑯𝑯(𝒓𝒓) = 𝑱𝑱free and 𝜵𝜵 ∙ 𝑩𝑩(𝒓𝒓) = 0. In 
the present problem, 𝑩𝑩(𝒓𝒓) = 𝜇𝜇0𝑯𝑯(𝒓𝒓) everywhere. Outside the cavity, the 𝐻𝐻-field is zero, which 
obviously satisfies both equations. Inside the cavity, 𝑱𝑱free = 0; therefore, both 𝜵𝜵 ∙ 𝑯𝑯(𝒓𝒓) and 
𝜵𝜵 × 𝑯𝑯(𝒓𝒓) must vanish. We have 

 𝜵𝜵 ∙ 𝑯𝑯(𝒓𝒓) = 𝜕𝜕�𝜌𝜌𝐻𝐻𝜌𝜌�
𝜌𝜌𝜌𝜌𝜌𝜌

+ 𝜕𝜕𝐻𝐻𝜑𝜑
𝜌𝜌𝜌𝜌𝜌𝜌

+ 𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝐻𝐻𝜑𝜑
𝜌𝜌𝜌𝜌𝜌𝜌

= 0. (2) 

 𝜵𝜵 × 𝑯𝑯(𝒓𝒓) = �𝜕𝜕𝐻𝐻𝑧𝑧
𝜌𝜌𝜌𝜌𝜌𝜌

− 𝜕𝜕𝐻𝐻𝜑𝜑
𝜕𝜕𝜕𝜕
� 𝝆𝝆� + �𝜕𝜕𝐻𝐻𝜌𝜌

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝐻𝐻𝑧𝑧

𝜕𝜕𝜕𝜕
�𝝋𝝋� + 1

𝜌𝜌
�𝜕𝜕�𝜌𝜌𝐻𝐻𝜑𝜑�

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝐻𝐻𝜌𝜌

𝜕𝜕𝜕𝜕
� 𝒛𝒛� 

 = −𝜕𝜕𝐻𝐻𝜑𝜑
𝜕𝜕𝜕𝜕

𝝆𝝆� + 𝜕𝜕�𝜌𝜌𝐻𝐻𝜑𝜑�
𝜌𝜌𝜕𝜕𝜌𝜌

𝒛𝒛� = 0. (3) 

Thus the magnetic field of Eq.(1) satisfies all the relevant equations of Maxwell. In addition, 
when the 𝐻𝐻-field outside the cavity is assumed to be zero, the boundary conditions at the inner 
walls of the cavity are simultaneously satisfied. The uniqueness of solutions of Maxwell’s 
equations thus guarantees that the correct field distribution has been identified. 
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Problem 2) 
a) 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = 𝐴𝐴0 �

sin(𝑘𝑘0𝑟𝑟)
(𝑘𝑘0𝑟𝑟)2 − cos(𝑘𝑘0𝑟𝑟)

𝑘𝑘0𝑟𝑟
� sin 𝜃𝜃 cos(𝜔𝜔𝜔𝜔)𝝋𝝋� . 

Using the Taylor series expansion of sine and cosine functions, we write 

 sin 𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥3

3!
+ 𝑥𝑥5

5!
− ⋯, cos 𝑥𝑥 = 1 − 𝑥𝑥2

2!
+ 𝑥𝑥4

4!
− ⋯. 

Therefore, in the limit when 𝑟𝑟 → 0, we have 

 sin(𝑘𝑘0𝑟𝑟)
(𝑘𝑘0𝑟𝑟)2 − cos(𝑘𝑘0𝑟𝑟)

𝑘𝑘0𝑟𝑟
= � 1

𝑘𝑘0𝑟𝑟
− 𝑘𝑘0𝑟𝑟

3!
+ (𝑘𝑘0𝑟𝑟)3

5!
− ⋯ � − � 1

𝑘𝑘0𝑟𝑟
− 𝑘𝑘0𝑟𝑟

2!
+ (𝑘𝑘0𝑟𝑟)3

4!
− ⋯ � = 𝑘𝑘0𝑟𝑟

3
− (𝑘𝑘0𝑟𝑟)3

30
+ ⋯. 

It is thus seen that 𝐴𝐴𝜑𝜑(𝒓𝒓, 𝑡𝑡) approaches zero when 𝑟𝑟 → 0, and that, therefore, the vector 
potential does not have a singularity at the origin. 
 
b) In the Lorenz gauge, 𝜵𝜵 ∙ 𝑨𝑨 + (1 𝑐𝑐2⁄ ) 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ = 0. In the present problem, since 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 0, it 
is sufficient to show that 𝜵𝜵 ∙ 𝑨𝑨 = 0. Considering that the only component of 𝑨𝑨(𝒓𝒓, 𝑡𝑡) is 𝐴𝐴𝜑𝜑, which 
is independent of the azimuthal angle 𝜑𝜑, we have 𝜵𝜵 ∙ 𝑨𝑨 = (𝑟𝑟 sin 𝜃𝜃)−1𝜕𝜕𝐴𝐴𝜑𝜑 𝜕𝜕𝜕𝜕⁄ = 0. The Lorenz 
gauge requirement is therefore satisfied. 

c) 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕

= 𝐴𝐴0𝜔𝜔 �
sin(𝑘𝑘0𝑟𝑟)

(𝑘𝑘0𝑟𝑟)2 − cos(𝑘𝑘0𝑟𝑟)
𝑘𝑘0𝑟𝑟

� sin 𝜃𝜃 sin(𝜔𝜔𝜔𝜔)𝝋𝝋� . 

d) 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝜵𝜵 × 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = 1
𝑟𝑟 sin𝜃𝜃

𝜕𝜕�sin𝜃𝜃𝐴𝐴𝜑𝜑�
𝜕𝜕𝜕𝜕

𝒓𝒓� − 1
𝑟𝑟
𝜕𝜕�𝑟𝑟𝐴𝐴𝜑𝜑�
𝜕𝜕𝜕𝜕

𝜽𝜽� 

 = 𝐴𝐴0
𝑟𝑟
��sin(𝑘𝑘0𝑟𝑟)

(𝑘𝑘0𝑟𝑟)2 − cos(𝑘𝑘0𝑟𝑟)
𝑘𝑘0𝑟𝑟

� �2 cos 𝜃𝜃 𝒓𝒓� +sin𝜃𝜃 𝜽𝜽�� − sin(𝑘𝑘0𝑟𝑟) sin 𝜃𝜃 𝜽𝜽�� cos(𝜔𝜔𝜔𝜔). 

Note that ℒ𝒾𝒾𝓂𝓂 𝑟𝑟→0 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = ⅔𝑘𝑘0𝐴𝐴0�cos 𝜃𝜃 𝒓𝒓� − sin 𝜃𝜃 𝜽𝜽�� cos(𝜔𝜔𝑡𝑡) = ⅔𝑘𝑘0𝐴𝐴0𝒛𝒛� cos(𝜔𝜔𝑡𝑡) is regular. 

e) 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬 × 𝑯𝑯 =  (𝐴𝐴0𝜔𝜔)2

2𝑍𝑍0𝑘𝑘0𝑟𝑟
�sin(𝑘𝑘0𝑟𝑟)

(𝑘𝑘0𝑟𝑟)2 − cos(𝑘𝑘0𝑟𝑟)
𝑘𝑘0𝑟𝑟

� ��sin(𝑘𝑘0𝑟𝑟)
(𝑘𝑘0𝑟𝑟)2 − cos(𝑘𝑘0𝑟𝑟)

𝑘𝑘0𝑟𝑟
� �2 cos 𝜃𝜃 𝜽𝜽� − sin 𝜃𝜃 𝒓𝒓�� 

 + sin(𝑘𝑘0𝑟𝑟) sin 𝜃𝜃 𝒓𝒓�} sin 𝜃𝜃 sin(2𝜔𝜔𝜔𝜔). 

Since the time-averaged 𝑺𝑺(𝒓𝒓, 𝑡𝑡) is zero, the electromagnetic energy is essentially stationary. 
 
Problem 3) 
a) 𝜌𝜌(𝒓𝒓, 𝑡𝑡) = 𝜆𝜆0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)Rect � 𝑧𝑧

2𝐿𝐿
�. 

b) 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 1
4𝜋𝜋𝜀𝜀0

� 𝜌𝜌�𝒓𝒓′,𝑡𝑡 −�𝒓𝒓 − 𝒓𝒓′� 𝑐𝑐⁄ �
|𝒓𝒓 − 𝒓𝒓′|

∞

−∞
𝑑𝑑𝒓𝒓′ = 1

4𝜋𝜋𝜀𝜀0
� 𝜆𝜆0𝛿𝛿�𝑥𝑥′�𝛿𝛿�𝑦𝑦′�Rect�𝑧𝑧′ 2𝐿𝐿⁄ �

�(𝑥𝑥−𝑥𝑥′)2+(𝑦𝑦−𝑦𝑦′)2+(𝑧𝑧−𝑧𝑧′)2 

∞

−∞
𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′ 

 = 𝜆𝜆0
4𝜋𝜋𝜀𝜀0

� 𝑑𝑑𝑧𝑧′

�𝑥𝑥2+𝑦𝑦2+(𝑧𝑧′−𝑧𝑧)2 

𝐿𝐿

𝑧𝑧′=−𝐿𝐿
= 𝜆𝜆0

4𝜋𝜋𝜀𝜀0
ln�(𝑧𝑧′ − 𝑧𝑧) + �𝑥𝑥2 + 𝑦𝑦2 + (𝑧𝑧′ − 𝑧𝑧)2��

𝑧𝑧′=−𝐿𝐿

𝐿𝐿
 

 = 𝜆𝜆0
4𝜋𝜋𝜀𝜀0

ln � �𝑟𝑟2+ (𝐿𝐿−𝑧𝑧)2 + (𝐿𝐿−𝑧𝑧)

 �𝑟𝑟2+ (𝐿𝐿+𝑧𝑧)2 − (𝐿𝐿+𝑧𝑧)
� = 𝜆𝜆0

4𝜋𝜋𝜀𝜀0
ln �

 ��𝑟𝑟2+(𝐿𝐿−𝑧𝑧)2 + (𝐿𝐿−𝑧𝑧)���𝑟𝑟2+(𝐿𝐿+𝑧𝑧)2 + (𝐿𝐿+𝑧𝑧)�

 𝑟𝑟2
�. 

c) Introducing the normalized parameters 𝑟̃𝑟 = 𝑟𝑟 𝐿𝐿⁄  and 𝑧̃𝑧 = 𝑧𝑧 𝐿𝐿⁄ , the above equation may be 
written as follows: 
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 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = −𝜆𝜆0 ln 𝑟𝑟
2𝜋𝜋𝜀𝜀0

+ 𝜆𝜆0 ln𝐿𝐿
2𝜋𝜋𝜀𝜀0

+ 𝜆𝜆0
4𝜋𝜋𝜀𝜀0

ln ���(1 − 𝑧̃𝑧)2 + 𝑟̃𝑟2 + (1 − 𝑧̃𝑧)� ��(1 + 𝑧̃𝑧)2 + 𝑟̃𝑟2 + (1 + 𝑧̃𝑧)��. 

In the limit when 𝐿𝐿 → ∞, both 𝑟̃𝑟 and 𝑧̃𝑧 approach zero, and the above equation becomes 

 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 𝜆𝜆0 ln(2𝐿𝐿)
2𝜋𝜋𝜀𝜀0

− 𝜆𝜆0 ln𝑟𝑟
2𝜋𝜋𝜀𝜀0

. 

The large constant containing ln(2𝐿𝐿) in the above expression does not contribute to the 
gradient of the scalar potential. Therefore, the 𝐸𝐸-field of the infinitely-long rod is given by 

 𝑬𝑬(𝒓𝒓) = −𝜵𝜵𝜓𝜓 = −�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝒓𝒓� = 𝜆𝜆0

2𝜋𝜋𝜀𝜀0𝑟𝑟
𝒓𝒓�. 

d) The Fourier transform of the charge-density distribution is given by 

 𝜌𝜌(𝒌𝒌,𝜔𝜔) = ∫ 𝜌𝜌(𝒓𝒓, 𝑡𝑡) exp[−i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] 𝑑𝑑𝒓𝒓𝑑𝑑𝑑𝑑∞
−∞  

 = 2𝜋𝜋𝜋𝜋(𝜔𝜔)𝜆𝜆0 ∫ exp(−i𝑘𝑘𝑧𝑧𝑧𝑧) 𝑑𝑑𝑑𝑑𝐿𝐿
−𝐿𝐿 = 4𝜋𝜋𝜆𝜆0𝛿𝛿(𝜔𝜔) sin(𝐿𝐿𝑘𝑘𝑧𝑧) 𝑘𝑘𝑧𝑧⁄ . 

Since the Fourier-transformed scalar potential is 𝜓𝜓(𝒌𝒌,𝜔𝜔) = 𝜀𝜀0−1 𝜌𝜌(𝒌𝒌, 𝜔𝜔) [𝑘𝑘2 − (𝜔𝜔 𝑐𝑐⁄ )2]⁄ , its 
inverse transform may now be evaluated as follows: 

 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 1
(2𝜋𝜋)4 ∫ 𝜓𝜓(𝒌𝒌,𝜔𝜔) exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] 𝑑𝑑𝒌𝒌𝑑𝑑𝑑𝑑∞

−∞  

 = 2𝜆𝜆0
(2𝜋𝜋)3𝜀𝜀0

� sin(𝐿𝐿𝑘𝑘𝑧𝑧)
𝑘𝑘𝑧𝑧 𝑘𝑘2

exp(i𝒌𝒌 ∙ 𝒓𝒓)
∞

−∞
𝑑𝑑𝒌𝒌 

 = 2𝜆𝜆0
(2𝜋𝜋)3𝜀𝜀0

� sin(𝐿𝐿𝑘𝑘𝑧𝑧) exp(i𝑘𝑘𝑧𝑧𝑧𝑧)
𝑘𝑘𝑧𝑧�𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2 �

exp�i�𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑦𝑦𝑦𝑦��
∞

−∞
𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑦𝑦𝑑𝑑𝑘𝑘𝑧𝑧 

 = 2𝜆𝜆0
(2𝜋𝜋)3𝜀𝜀0

� sin(𝐿𝐿𝑘𝑘𝑧𝑧)[cos(𝑘𝑘𝑧𝑧𝑧𝑧)+i sin(𝑘𝑘𝑧𝑧𝑧𝑧)]
𝑘𝑘𝑧𝑧

� 1
𝑘𝑘∥
2 + 𝑘𝑘𝑧𝑧2

∫ exp(i𝑘𝑘∥𝑟𝑟∥ cos𝜑𝜑)𝑘𝑘∥𝑑𝑑𝑑𝑑
2𝜋𝜋
𝜑𝜑=0

∞

𝑘𝑘∥=0

∞

𝑘𝑘𝑧𝑧=−∞

𝑑𝑑𝑘𝑘∥𝑑𝑑𝑘𝑘𝑧𝑧 

 = 𝜆𝜆0
(2𝜋𝜋)2𝜀𝜀0

� {sin[𝑘𝑘𝑧𝑧(𝐿𝐿+𝑧𝑧)]+sin[𝑘𝑘𝑧𝑧(𝐿𝐿−𝑧𝑧)]}+ i{cos[𝑘𝑘𝑧𝑧(𝐿𝐿−𝑧𝑧)]−cos[𝑘𝑘𝑧𝑧(𝐿𝐿+𝑧𝑧)]}
𝑘𝑘𝑧𝑧

� 𝑘𝑘∥𝐽𝐽0(𝑘𝑘∥𝑟𝑟∥)
𝑘𝑘∥
2+𝑘𝑘𝑧𝑧2

𝑑𝑑𝑘𝑘∥𝑑𝑑𝑘𝑘𝑧𝑧
∞

𝑘𝑘∥=0

∞

−∞

 

 = 𝜆𝜆0
(2𝜋𝜋)2𝜀𝜀0

� {sin[𝑘𝑘𝑧𝑧(𝐿𝐿+𝑧𝑧)]+sin[𝑘𝑘𝑧𝑧(𝐿𝐿−𝑧𝑧)]} − i{cos[𝑘𝑘𝑧𝑧(𝐿𝐿+𝑧𝑧)]−cos[𝑘𝑘𝑧𝑧(𝐿𝐿−𝑧𝑧)]}
𝑘𝑘𝑧𝑧

𝐾𝐾0(𝑟𝑟∥|𝑘𝑘𝑧𝑧|)𝑑𝑑𝑘𝑘𝑧𝑧
∞

−∞
 

 = 𝜆𝜆0
(2𝜋𝜋)2𝜀𝜀0

∫ 𝑘𝑘𝑧𝑧−1{sin[𝑘𝑘𝑧𝑧(𝐿𝐿 + 𝑧𝑧)] + sin[𝑘𝑘𝑧𝑧(𝐿𝐿 − 𝑧𝑧)]}𝐾𝐾0(𝑟𝑟∥|𝑘𝑘𝑧𝑧|)𝑑𝑑𝑘𝑘𝑧𝑧
∞
−∞  

 = 𝜋𝜋𝜆𝜆0
(2𝜋𝜋)2𝜀𝜀0

�ln ��𝐿𝐿+𝑧𝑧
𝑟𝑟∥
� + �1 + �𝐿𝐿+𝑧𝑧

𝑟𝑟∥
�
2
� + ln ��𝐿𝐿−𝑧𝑧

𝑟𝑟∥
� + �1 + �𝐿𝐿−𝑧𝑧

𝑟𝑟∥
�
2
�� 

 = −𝜆𝜆0 ln𝑟𝑟∥
2𝜋𝜋𝜀𝜀0

+ 𝜆𝜆0
4𝜋𝜋𝜀𝜀0

ln ��(𝐿𝐿 + 𝑧𝑧) + �𝑟𝑟∥2 + (𝐿𝐿 + 𝑧𝑧)2� �(𝐿𝐿 − 𝑧𝑧) + �𝑟𝑟∥2 + (𝐿𝐿 − 𝑧𝑧)2��. 

This result is identical with that obtained in part (b), which was obtained using direct evaluation 
in the spacetime domain. 

The terms of the integrand 
that contain cosines are odd 
functions of kz; therefore, 

their integrals vanish. 

Define 𝒌𝒌∥ = 𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑦𝑦𝒚𝒚� 
and 𝒓𝒓∥ = 𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚�. 


