
Opti 501 2nd Midterm Solutions 10/30/2014 

Problem 1)  

a) Charge-density distribution:  𝜌𝜌(𝒓𝒓, 𝑡𝑡) = 𝜎𝜎𝑠𝑠0Circ(𝑟𝑟∥ 𝑅𝑅⁄ )𝛿𝛿(𝑧𝑧), where 𝑟𝑟∥ = �𝑥𝑥2 + 𝑦𝑦2. 

b) Polarization distribution:      𝑷𝑷(𝒓𝒓, 𝑡𝑡) = 𝑃𝑃0𝒙𝒙� Rect(𝑥𝑥 𝐿𝐿𝑥𝑥⁄ )Rect(𝑦𝑦 𝐿𝐿𝑦𝑦⁄ )Rect(𝑧𝑧 𝐿𝐿𝑧𝑧⁄ ). 

c) Magnetization distribution:  𝑴𝑴(𝒓𝒓, 𝑡𝑡) = 𝑀𝑀0𝒛𝒛� Circ(𝑟𝑟∥ 𝑅𝑅⁄ )Rect(𝑧𝑧 ℎ⁄ ) cos(𝜔𝜔0𝑡𝑡 + 𝜑𝜑0). 
 
Problem 2)  a) For the incident plane-wave in the region 𝑦𝑦 ≤ 0, we have 

 𝑬𝑬(inc)(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨 𝜕𝜕𝑡𝑡⁄ = 𝜔𝜔0𝐴𝐴0𝒛𝒛� cos(𝑘𝑘0𝑦𝑦 − 𝜔𝜔0𝑡𝑡), 

 𝑯𝑯(inc)(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1𝜵𝜵 × 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1(𝜕𝜕𝐴𝐴𝑧𝑧 𝜕𝜕𝑦𝑦⁄ )𝒙𝒙� 

 = 𝜇𝜇0−1𝑘𝑘0𝐴𝐴0𝒙𝒙� cos(𝑘𝑘0𝑦𝑦 − 𝜔𝜔0𝑡𝑡) = (𝜔𝜔0𝐴𝐴0 𝑍𝑍0⁄ )𝒙𝒙� cos(𝑘𝑘0𝑦𝑦 − 𝜔𝜔0𝑡𝑡). 

For the reflected plane-wave (again in the region 𝑦𝑦 ≤ 0), we have 

 𝑬𝑬(ref)(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨 𝜕𝜕𝑡𝑡⁄ = −𝜔𝜔0𝐴𝐴0𝒛𝒛� cos(𝑘𝑘0𝑦𝑦 + 𝜔𝜔0𝑡𝑡), 

 𝑯𝑯(ref)(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1𝜵𝜵 × 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1(𝜕𝜕𝐴𝐴𝑧𝑧 𝜕𝜕𝑦𝑦⁄ )𝒙𝒙� 

 = 𝜇𝜇0−1𝑘𝑘0𝐴𝐴0𝒙𝒙� cos(𝑘𝑘0𝑦𝑦 + 𝜔𝜔0𝑡𝑡) = (𝜔𝜔0𝐴𝐴0 𝑍𝑍0⁄ )𝒙𝒙� cos(𝑘𝑘0𝑦𝑦 + 𝜔𝜔0𝑡𝑡). 

b) In the plane 𝑦𝑦 = 0 at the front facet of the mirror, the total 𝐸𝐸-field and the total 𝐻𝐻-field are 
given by 

 𝑬𝑬(total)(𝑥𝑥,𝑦𝑦 = 0, 𝑧𝑧, 𝑡𝑡) = 𝑬𝑬(inc) + 𝑬𝑬(ref) = 𝜔𝜔0𝐴𝐴0𝒛𝒛� cos(−𝜔𝜔0𝑡𝑡) − 𝜔𝜔0𝐴𝐴0𝒛𝒛� cos(𝜔𝜔0𝑡𝑡) = 0, 

 𝑯𝑯(total)(𝑥𝑥,𝑦𝑦 = 0, 𝑧𝑧, 𝑡𝑡) = 𝑯𝑯(inc) + 𝑯𝑯(ref) = 2(𝜔𝜔0𝐴𝐴0 𝑍𝑍0⁄ )𝒙𝒙� cos(𝜔𝜔0𝑡𝑡). 

There is no perpendicular 𝐸𝐸-field immediately before the mirror at 𝑦𝑦 = 0−. Also, inside the 
mirror, and specifically at 𝑦𝑦 = 0+, there are no 𝐸𝐸-fields. Maxwell’s boundary condition relating 
the surface charge-density to the discontinuity of 𝜀𝜀0𝑬𝑬⊥ at 𝑦𝑦 = 0 thus yields 𝜎𝜎𝑠𝑠(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 0. 

The tangential 𝐻𝐻-field immediately before the mirror at 𝑦𝑦 = 0− is 2(𝜔𝜔0𝐴𝐴0 𝑍𝑍0⁄ )𝒙𝒙� cos(𝜔𝜔0𝑡𝑡). 
Since inside the mirror, and specifically at 𝑦𝑦 = 0+, there exist no 𝐻𝐻-fields, Maxwell’s boundary 
condition relating the surface current-density 𝑱𝑱𝑠𝑠 to the discontinuity of 𝑯𝑯∥ at 𝑦𝑦 = 0 yields 
𝑱𝑱𝑠𝑠(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 2(𝜔𝜔0𝐴𝐴0 𝑍𝑍0⁄ )𝒛𝒛� cos(𝜔𝜔0𝑡𝑡). The amplitude of this surface current-density is thus given 
by 𝐽𝐽𝑠𝑠0 = 2(𝜔𝜔0𝐴𝐴0 𝑍𝑍0⁄ ). 

c) According to Example 10, Chapter 4, the 𝑬𝑬 and 𝑯𝑯 fields of the plane-wave propagating in the 
region 𝑦𝑦 ≥ 0 are 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −½𝑍𝑍0𝐽𝐽𝑠𝑠0𝒛𝒛� cos(𝑘𝑘0𝑦𝑦 − 𝜔𝜔0𝑡𝑡) and  𝑯𝑯(𝒓𝒓, 𝑡𝑡) = −½𝐽𝐽𝑠𝑠0𝒙𝒙� cos(𝑘𝑘0𝑦𝑦 − 𝜔𝜔0𝑡𝑡). 
We may also consider the vector potential of the field radiated into the shadow region, which is 
given by 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = −½(𝑍𝑍0𝐽𝐽𝑠𝑠0 𝜔𝜔0⁄ )𝒛𝒛� sin(𝑘𝑘0𝑦𝑦 − 𝜔𝜔0𝑡𝑡). Clearly, the field radiated into the shadow 
region is exactly cancelled out by the continuation beyond the PEC mirror of the incident beam. 
 
Problem 3) 
a) For the plane-wave, the Lorenz gauge formula 𝜵𝜵 ∙ 𝑨𝑨 + 𝜕𝜕𝜕𝜕

𝑐𝑐2𝜕𝜕𝜕𝜕
= 0 becomes 𝒌𝒌 ∙ 𝑨𝑨0 = (𝜔𝜔 𝑐𝑐2⁄ )𝜓𝜓0. 

b) 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨 𝜕𝜕𝑡𝑡⁄ = (−i𝒌𝒌𝜓𝜓0 + i𝜔𝜔𝑨𝑨0) exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)], 

 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜵𝜵 × 𝑨𝑨 = i𝒌𝒌 × 𝑨𝑨0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]. 
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c) i) Maxwell’s first equation (in free space): 𝜵𝜵 ∙ 𝑬𝑬 = 0  →   𝒌𝒌 ∙ 𝑬𝑬 = 0  →  𝑘𝑘2𝜓𝜓0 − 𝜔𝜔𝒌𝒌 ∙ 𝑨𝑨0 = 0. 
This result may now be combined with that obtained in part (a) to yield 

 [𝑘𝑘2 − (𝜔𝜔 𝑐𝑐⁄ )2]𝜓𝜓0 = 0. 

If 𝜓𝜓0 ≠ 0, we must have 𝑘𝑘2 = (𝜔𝜔 𝑐𝑐⁄ )2. 
 
ii) Maxwell’s second equation (in free space): 

  𝜵𝜵 × 𝑩𝑩 = 𝜇𝜇0𝜀𝜀0 𝜕𝜕𝑬𝑬 𝜕𝜕𝑡𝑡⁄     →      i2𝒌𝒌 × (𝒌𝒌 × 𝑨𝑨0) = −i(𝜔𝜔 𝑐𝑐2⁄ )(−i𝒌𝒌𝜓𝜓0 + i𝜔𝜔𝑨𝑨0) 

 →      (𝒌𝒌 ∙ 𝑨𝑨0)𝒌𝒌 − 𝑘𝑘2𝑨𝑨0 = (𝜔𝜔 𝑐𝑐2⁄ )(𝒌𝒌𝜓𝜓0 − 𝜔𝜔𝑨𝑨0) 

 →      [𝒌𝒌 ∙ 𝑨𝑨0 − (𝜔𝜔 𝑐𝑐2⁄ )𝜓𝜓0]𝒌𝒌 = [𝑘𝑘2 − (𝜔𝜔 𝑐𝑐⁄ )2]𝑨𝑨0 
The preceding equation, when combined with the Lorenz gauge result obtained in part (a), yields 

 [𝑘𝑘2 − (𝜔𝜔 𝑐𝑐⁄ )2]𝑨𝑨0 = 0, 

which gives a non-zero value for 𝑨𝑨0 only if 𝑘𝑘2 = (𝜔𝜔 𝑐𝑐⁄ )2. 
 
iii) Maxwell’s third equation: 

 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝑡𝑡⁄   →     i𝒌𝒌 × (−i𝒌𝒌𝜓𝜓0 + i𝜔𝜔𝑨𝑨0) = i2𝜔𝜔𝒌𝒌 × 𝑨𝑨0 

 →    −(𝒌𝒌× 𝒌𝒌)𝜓𝜓0 + 𝜔𝜔𝒌𝒌 × 𝑨𝑨0 = 𝜔𝜔𝒌𝒌 × 𝑨𝑨0 (automatically satisfied). 

iv) Maxwell’s fourth equation: 

 𝜵𝜵 ∙ 𝑩𝑩 = 0    →       i2𝒌𝒌 ∙ (𝒌𝒌× 𝑨𝑨0) = 0   →   (𝒌𝒌 × 𝒌𝒌) ∙ 𝑨𝑨0 = 0 (automatically satisfied). 
 
Problem 4) a) The charge-current continuity equation yields 

 𝜵𝜵 ∙ 𝑱𝑱 = 𝜕𝜕𝐽𝐽𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝐽𝐽𝑦𝑦
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝐽𝐽𝑧𝑧
𝜕𝜕𝑧𝑧

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜔𝜔0𝜌𝜌0 cos(𝑘𝑘0𝑥𝑥) sin(𝜔𝜔0𝑡𝑡). 

It is sufficient to assume that 𝐽𝐽𝑦𝑦 = 𝐽𝐽𝑧𝑧 = 0, and that 𝐽𝐽𝑥𝑥 is a function only of 𝑥𝑥 and 𝑡𝑡. We will have 

 𝜕𝜕
𝜕𝜕𝑥𝑥
𝐽𝐽𝑥𝑥(𝑥𝑥, 𝑡𝑡) = 𝜔𝜔0𝜌𝜌0 cos(𝑘𝑘0𝑥𝑥) sin(𝜔𝜔0𝑡𝑡)    →     𝑱𝑱(𝒓𝒓, 𝑡𝑡) = 𝐽𝐽𝑥𝑥𝒙𝒙� = �𝜔𝜔0𝜕𝜕0

𝑘𝑘0
� sin(𝑘𝑘0𝑥𝑥) sin(𝜔𝜔0𝑡𝑡) 𝒙𝒙�. 

b) 𝜌𝜌(𝒓𝒓, 𝑡𝑡) and 𝑱𝑱(𝒓𝒓, 𝑡𝑡) may be expressed as superpositions of plane-waves, as follows: 

 𝜌𝜌(𝒓𝒓, 𝑡𝑡) = ¼𝜌𝜌0[exp(i𝑘𝑘0𝑥𝑥) + exp(−i𝑘𝑘0𝑥𝑥)][exp(i𝜔𝜔0𝑡𝑡) + exp(−i𝜔𝜔0𝑡𝑡)] 

 = ¼𝜌𝜌0 exp[i(𝑘𝑘0𝑥𝑥 + 𝜔𝜔0𝑡𝑡)] + ¼𝜌𝜌0 exp[−i(𝑘𝑘0𝑥𝑥 + 𝜔𝜔0𝑡𝑡)] 
 +¼𝜌𝜌0 exp[i(𝑘𝑘0𝑥𝑥 − 𝜔𝜔0𝑡𝑡)] + ¼𝜌𝜌0 exp[−i(𝑘𝑘0𝑥𝑥 − 𝜔𝜔0𝑡𝑡)]. 

 𝑱𝑱(𝒓𝒓, 𝑡𝑡) = −�𝜔𝜔0𝜕𝜕0
4𝑘𝑘0

� [exp(i𝑘𝑘0𝑥𝑥) − exp(−i𝑘𝑘0𝑥𝑥)][exp(i𝜔𝜔0𝑡𝑡) − exp(−i𝜔𝜔0𝑡𝑡)]𝒙𝒙� 

 = −�𝜔𝜔0𝜕𝜕0
4𝑘𝑘0

� exp[i(𝑘𝑘0𝑥𝑥 + 𝜔𝜔0𝑡𝑡)]𝒙𝒙� − �𝜔𝜔0𝜕𝜕0
4𝑘𝑘0

� exp[−i(𝑘𝑘0𝑥𝑥 + 𝜔𝜔0𝑡𝑡)]𝒙𝒙� 

 + �𝜔𝜔0𝜕𝜕0
4𝑘𝑘0

� exp[i(𝑘𝑘0𝑥𝑥 − 𝜔𝜔0𝑡𝑡)]𝒙𝒙� + �𝜔𝜔0𝜕𝜕0
4𝑘𝑘0

� exp[−i(𝑘𝑘0𝑥𝑥 − 𝜔𝜔0𝑡𝑡)]𝒙𝒙�. 

All the above plane-waves have 𝑘𝑘𝑥𝑥 = ±𝑘𝑘0, 𝑘𝑘𝑦𝑦 = 𝑘𝑘𝑧𝑧 = 0, and 𝜔𝜔 = ±𝜔𝜔0. Therefore, the 
value of [𝑘𝑘2 − (𝜔𝜔 𝑐𝑐⁄ )2] for all these plane-waves is the same, namely, [𝑘𝑘02 − (𝜔𝜔0 𝑐𝑐⁄ )2]. The 
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scalar potential for each charge-density plane-wave is obtained by multiplying the corresponding 
charge-density by 1

𝜀𝜀0�𝑘𝑘02−(𝜔𝜔0 𝑐𝑐⁄ )2�
. Similarly, the vector potential for each current-density plane-

wave is obtained by multiplying the corresponding current-density by 𝜇𝜇0
𝑘𝑘02−(𝜔𝜔0 𝑐𝑐⁄ )2. It is readily 

observed that the scalar potential and vector potential plane-waves combine once again to form 
simple sine and cosine functions, as follows: 

 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 𝜕𝜕0 cos(𝑘𝑘0𝑥𝑥) cos(𝜔𝜔0𝜕𝜕)
𝜀𝜀0�𝑘𝑘02−(𝜔𝜔0 𝑐𝑐⁄ )2�

, 

 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = (𝜇𝜇0𝜔𝜔0𝜕𝜕0 𝑘𝑘0⁄ ) sin(𝑘𝑘0𝑥𝑥) sin(𝜔𝜔0𝜕𝜕)
𝑘𝑘02−(𝜔𝜔0 𝑐𝑐⁄ )2 𝒙𝒙�. 

c) 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕

 

 = 𝜕𝜕0𝑘𝑘0 sin(𝑘𝑘0𝑥𝑥) cos(𝜔𝜔0𝜕𝜕)
𝜀𝜀0�𝑘𝑘02−(𝜔𝜔0 𝑐𝑐⁄ )2�

𝒙𝒙� − �𝜇𝜇0𝜔𝜔0
2𝜕𝜕0 𝑘𝑘0⁄ �sin(𝑘𝑘0𝑥𝑥)cos(𝜔𝜔0𝜕𝜕)

𝑘𝑘02−(𝜔𝜔0 𝑐𝑐⁄ )2 𝒙𝒙� 

 = � 𝜕𝜕0
𝜀𝜀0𝑘𝑘0

� sin(𝑘𝑘0𝑥𝑥) cos(𝜔𝜔0𝑡𝑡)𝒙𝒙�. 

 
 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜵𝜵 × 𝑨𝑨 = (𝜕𝜕𝐴𝐴𝑥𝑥 𝜕𝜕𝑧𝑧⁄ )𝒚𝒚� − (𝜕𝜕𝐴𝐴𝑥𝑥 𝜕𝜕𝑦𝑦⁄ )𝒛𝒛� = 0. 
 

It is interesting to note that neither the current 𝑱𝑱(𝒓𝒓, 𝑡𝑡) nor the time-dependent 𝐸𝐸-field in the 
present problem give rise to a magnetic field. In fact, a quick check of Maxwell’s second 
equation reveals that 𝑱𝑱(𝒓𝒓, 𝑡𝑡) and 𝜕𝜕𝑫𝑫 𝜕𝜕𝑡𝑡⁄  exactly cancel out. The satisfaction of the remaining 
Maxwell’s equations may also be readily verified. 
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