Opti 501 2" Midterm Solutions 10/30/2014
Problem 1)

a) Charge-density distribution: p(r,t) = ay,Circ(ry/R)8(z), where ry = \/x2 + y2.

b) Polarization distribution:  P(r,t) = PyX Rect(x/Ly)Rect(y/L,)Rect(z/L,).

c) Magnetization distribution: M(r,t) = M,2 Circ(ry/R)Rect(z/h) cos(wot + ¢g).

Problem 2) a) For the incident plane-wave in the region y < 0, we have
EMO(r,t) = =V — 0A/0t = wyA2 cos(kyy — wot),
H (r,0) = ug*B(r,0) = up 'V x A(r,t) = u5* (04,/0y)%
= Ho "koAgX cos(koy — wot) = (woAg/Zy)X cos(koy — wot).
For the reflected plane-wave (again in the region y < 0), we have
ECD(r,t) = -V — 0A/0t = —wyA2 cos(kyy + wot),
HTD(r,t) = ug'B(r,t) = 'V x A(r,t) = py*(04,/0y)%
= Uy tkoAeX cos(kyy + wot) = (wodo/Zy)X cos(kyy + wpt).
b) In the plane y = 0 at the front facet of the mirror, the total E-field and the total H-field are
given by
E®@(x y = 0,2t) = E(O 4 ETeD = ¢y 4,2 cos(—wot) — wydoZ cos(wet) = 0,
H®®@ (x 3 =0,2,t) = HI" + gD = 2(w,4,/Z4)% cos(wgt).

There is no perpendicular E-field immediately before the mirror at y = 0. Also, inside the
mirror, and specifically at y = 0", there are no E-fields. Maxwell’s boundary condition relating
the surface charge-density to the discontinuity of eE | at y = 0 thus yields o,(x, z,t) = 0.

The tangential H-field immediately before the mirror at y = 07 is 2(wy4¢/Zy)X cos(wyt).
Since inside the mirror, and specifically at y = 0%, there exist no H-fields, Maxwell’s boundary
condition relating the surface current-density J; to the discontinuity of H, at y = 0 yields
Js(x,z,t) = 2(woAo/Zy)Z cos(wyt). The amplitude of this surface current-density is thus given
by Jso = 2(woAo/Zo)-

c) According to Example 10, Chapter 4, the E and H fields of the plane-wave propagating in the
regiony = 0are E(r,t) = —%ZyJs0Z cos(kgy — wot) and H(r,t) = —%Js0X cos(kyy — wot).
We may also consider the vector potential of the field radiated into the shadow region, which is
given by A(r,t) = —%(ZyJs0/ wo)Z sin(kyy — wyt). Clearly, the field radiated into the shadow
region is exactly cancelled out by the continuation beyond the PEC mirror of the incident beam.

Problem 3)
a) For the plane-wave, the Lorenz gauge formula V- A + C‘zlgt = 0 becomes k- Ay = (w/c?),.
b) E(r,t) = —Vy — 0A/0t = (—ikyp, + iwA,) exp[i(k - r — wt)],

B(r,t) =V xA=ikx Ayexpli(k-r — wt)].



c) i) Maxwell’s first equation (in free space): V-E=0 —» k-E=0 - k?yp,— wk-A4,=0.
This result may now be combined with that obtained in part (a) to yield

[k? — (w/c)?]po = 0.
If Y, # 0, we must have k? = (w/c)?.

i) Maxwell’s second equation (in free space):
VXB=puysdE/0t - i’kx (kXA =—i(w/c?)(—ikyp, + iwAg)
> (k- Ak — k*Ay = (w/c?) (kg — wAy)
= k-4 — (w/c*)polk = [k? — (w/c)?]Aq
The preceding equation, when combined with the Lorenz gauge result obtained in part (a), yields
[k? — (w/c)?]As = 0,
which gives a non-zero value for 4, only if k? = (w/c)?.

iii) Maxwell’s third equation:
- —(kxK)Y,+ wk x A, = wk X A, (automatically satisfied).
O//f

iv) Maxwell’s fourth equation:
V-B=0 - i’k-(kxA,)=0 - //kz A, = 0 (automatically satisfied).

Problem 4) a) The charge-current continuity equation yields

6] aJ aJ. ap .
v-J=-== a_; =7 = — 5, = Wopo cos(kox) sin(wot).

It is sufficient to assume that]y = J, = 0, and that /. is a function only of x and t. We will have

%jx(x, t) = wopo cos(kyx) sin(woet) - J(r,t) =], X = (w;zf‘)) sin(kyx) sin(wyt) X.
b) p(r,t) and J(r, t) may be expressed as superpositions of plane-waves, as follows:
p(r,t) = Yapolexp(ikox) + exp(—ikox)][exp(iwot) + exp(—iw,t)]
= Yap, expli(kox + wot)] + Yapg exp[—i(kox + wot)]
+%4p, explilkox — wot)] + Yapy exp[—i(kox — wot)].

J(r,6) = — (%222) [exp(ikox) — exp(=iko)][exp(iwot) — exp(iwot)]%

= — (Lo 4‘;{”0) expliCkox + wot)]  — ( 4‘;{"0) exp[—i(kox + wot)] &

+(5222) expliCiox — wot)] % + (5222) expl-ilkox — wot)] 2.

All the above plane-waves have k, = *k, k, =k, =0, and w = +w,. Therefore, the
value of [k? — (w/c)?] for all these plane-waves is the same, namely, [k3 — (wq/c)?]. The



scalar potential for each charge-density plane-wave is obtained by multiplying the corresponding

charge-density by m Similarly, the vector potential for each current-density plane-

wave is obtained by multiplying the corresponding current-density by Fo

k§—(wo/c)?’
observed that the scalar potential and vector potential plane-waves combine once again to form
simple sine and cosine functions, as follows:

W(r,t) =2

It is readily

o0 cos(kox) cos(wgt)
go[k3—(wo/0)?]

( Po/ko) sin(kox) sin(wot) ~
Al 0 = e X

)  Erbt=-"p->

_ Pokgsin(kex) cos(wot) o, (Howdpo/ko) sin(kox) cos(wot)
So[kg—((x)o/c)z] kg_((UO/C)Z

= (50’)}20) sin(kgx) cos(wyt) X.

B(r,t) =V x A = (04,/02)y — (04,/3y)z = 0.

It is interesting to note that neither the current J(r, t) nor the time-dependent E-field in the
present problem give rise to a magnetic field. In fact, a quick check of Maxwell’s second
equation reveals that J(r,t) and dD/dt exactly cancel out. The satisfaction of the remaining
Maxwell’s equations may also be readily verified.




