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Problem 2) a) The symmetry of the problem dictates that the potential be a function of the radial 
distance  = x2 + y2 from the wire. At an observation point located in the xy-plane at a distance  
from the origin, we will have 
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The first term on the right-hand-side of the above expression is infinitely large, but it does 
not vary with  and may, therefore, be ignored. The scalar potential is thus given by 

 (r) = (o/2o)ln. 
 

Sifting property of (·) 

Sifting property of  ' (·)

 = x2 + y2
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b) Since E = , we investigate the gradient of the neglected function ln(z0+ 2 + z0
2) in the 

limit when z0→, to see if it has any dependence on the radial distance . We find 
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Thus, for any finite value of , in the limit when z0→, the denominator of the above 
expression approaches 2, while the numerator approaches zero. It is thus clear that, for 
sufficiently large z0, the contribution to the E-field of ln(z0+ 2 + z0

2) at any finite radial 
distance  is negligibly small. 
 
c) The calculation of A(r) follows essentially the same steps as the above calculation of  (r). We 
will have 
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Ignoring the first term on the right-hand-side of the above equation, we find the vector 
potential of the wire to be A(r) = (oIoz^/2)ln . 
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b) Since Maxwell’s 1st equation ensures that  ·D = 0, we define the magnetic vector potential 
A(m)(r, t) such that D(r, t) =  A(m)(r, t). Substitution into Maxwell’s 2nd equation yields 
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c) Using the above magnetic potentials, Maxwell’s 3rd equation may be written as follows: 
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 free(r, t) is set to zero.

Jfree(r, t) is set to zero.

Because  (m) = 0.
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Clearly, eliminating  (m) from the above equation requires the same gauge for the magnetic 
potentials as the Lorenz gauge that was defined for the electric potentials, that is, 
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d) Maxwell’s 3rd equation in conjunction with the Lorenz-equivalent gauge now becomes 
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This wave equation for the magnetic vector potential, having ( )
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counterpart of the equation for the standard vector potential, where the source term is ( )
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The wave equation for ( )( , )m t r  could similarly be derived by substituting into Maxwell’s 

4th equation the expressions that relate D and H to A(m) and  (m). The final result, after taking 
account of the Lorenz-equivalent gauge, is 
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Once again we have an equation similar to the standard wave equation for the (electric) 
scalar potential, except that the source term here is 1 ( )

o bound,
m   rather than 1 ( )

o total.
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e) By analogy with the standard wave equation, we write the solutions to the preceding wave 
equations for magnetic potentials as follows: 
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Equivalent of Lorenz gauge


