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Problem 2) a) The symmetry of the problem dictates that the potential be a function of the radial

distance p= VX*+y* from the wire. At an observation point located in the Xy-plane at a distance p
from the origin, we will have
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The first term on the right-hand-side of the above expression is infinitely large, but it does
not vary with p and may, therefore, be ignored. The scalar potential is thus given by

(N =—(A/27&)Inp.



b) Since E=—-V i, we investigate the gradient of the neglected function In(z+ Vp7+202) in the
limit when zy,— oo, to see if it has any dependence on the radial distance p. We find
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Thus, for any finite value of p, in the limit when Z,— oo, the denominator of the above
expression approaches 2, while the numerator approaches zero. It is thus clear that, for
sufficiently large 2, the contribution to the E-field of In(z+Vp®+2°) at any finite radial
distance p is negligibly small.

c¢) The calculation of A(r) follows essentially the same steps as the above calculation of w(r). We
will have
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Ignoring the first term on the right-hand-side of the above equation, we find the vector
potential of the wire to be A(r)=—( ,uOIOZA/27z') Inp.

Problem 3)
a) V-D(r,t)=0, < pp.(rb)is set to zero.|
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b) Since Maxwell’s 1* equation ensures that VV-D=0, we define the magnetic vector potential
A™(r,t) such that D(r,t) = — ¥ xA™(r,t). Substitution into Maxwell’s 2™ equation yields

Vx[H,H)+A™(r0/t]1=0  —  H(r,t)+ A A™(r,t)/ot =y ™(r,1). <|BecauseVxPy™=0. |

¢) Using the above magnetic potentials, Maxwell’s 3™ equation may be written as follows:
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Clearly, eliminating ™ from the above equation requires the same gauge for the magnetic
potentials as the Lorenz gauge that was defined for the electric potentials, that is,
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d) Maxwell’s 3 equation in conjunction with the Lorenz-equivalent gauge now becomes

VA™(r,t) - (1/c))PA™(r 1)/t = - I ™
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This wave equation for the magnetic vector potential, having ¢ J{™ = for the source term, is the
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counterpart of the equation for the standard vector potential, where the source term is £ J (%

The wave equation for '™ (r,t) could similarly be derived by substituting into Maxwell’s

4™ equation the expressions that relate D and H to A™ and ™. The final result, after taking
account of the Lorenz-equivalent gauge, is
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Once again we have an equation similar to the standard wave equation for the (electric)

scalar potential, except that the source term here is 4 'p{ , rather than &'p%.

e) By analogy with the standard wave equation, we write the solutions to the preceding wave
equations for magnetic potentials as follows:
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