Problem 1) a) $\quad J_{\text {bound }}^{(e)}=\mu_{\mathrm{o}}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}(\boldsymbol{r}, t)=\mu_{\mathrm{o}}^{-1} \boldsymbol{\nabla} \times\left[m_{\mathrm{o}} \delta(x) \delta(y) \delta(z) \hat{\mathbf{z}}\right]$

$$
=\mu_{\mathrm{o}}^{-1} m_{0}\left[\delta(x) \delta^{\prime}(y) \hat{\boldsymbol{x}}-\delta^{\prime}(x) \delta(y) \hat{\boldsymbol{y}}\right] \delta(z)
$$

b) $\quad \boldsymbol{A}(\boldsymbol{r})=\left(\mu_{0} / 4 \pi\right) \int_{-\infty}^{\infty}\left[\boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right) /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right] \mathrm{d} \boldsymbol{r}^{\prime}$

$$
=\frac{m_{\mathrm{o}}}{4 \pi} \int_{-\infty}^{\infty} \frac{\left[\delta\left(x^{\prime}\right) \delta^{\prime}\left(y^{\prime}\right) \hat{\boldsymbol{x}}-\delta^{\prime}\left(x^{\prime}\right) \delta\left(y^{\prime}\right) \hat{\boldsymbol{y}}\right] \delta\left(z^{\prime}\right)}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}} \mathrm{~d} x^{\prime} \mathrm{d} y^{\prime} \mathrm{d} z^{\prime} \quad \leftarrow \text { Sifting property of } \delta(\cdot)
$$

$$
=\frac{m_{0} \hat{\boldsymbol{x}}}{4 \pi} \int_{-\infty}^{\infty} \frac{\delta^{\prime}\left(y^{\prime}\right)}{\sqrt{x^{2}+\left(y-y^{\prime}\right)^{2}+z^{2}}} \mathrm{~d} y^{\prime}-\frac{m_{0} \hat{\boldsymbol{y}}}{4 \pi} \int_{-\infty}^{\infty} \frac{\delta^{\prime}\left(x^{\prime}\right)}{\sqrt{\left(x-x^{\prime}\right)^{2}+y^{2}+z^{2}}} \mathrm{~d} x^{\prime} \leftarrow \text { Sifting property of } \delta^{\prime}(\cdot)
$$

$$
=-\frac{m_{0} \hat{\boldsymbol{x}}}{4 \pi} \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{m_{0} \hat{\boldsymbol{y}}}{4 \pi} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

$$
=\frac{m_{0}(x \hat{\boldsymbol{y}}-y \hat{\boldsymbol{x}})}{4 \pi\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=\frac{m_{0} \hat{\mathbf{z}} \times \boldsymbol{r}}{4 \pi r^{3}}=\frac{m_{0}[(\cos \theta) \hat{\boldsymbol{r}}-(\sin \theta) \hat{\boldsymbol{\theta}}] \times \hat{\boldsymbol{r}}}{4 \pi r^{2}}=\frac{m_{0} \sin \theta}{4 \pi r^{2}} \hat{\boldsymbol{\phi}}
$$

c) $\boldsymbol{B}(\boldsymbol{r})=\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r})=\boldsymbol{\nabla} \times\left(\frac{m_{\mathrm{o}} \sin \theta}{4 \pi r^{2}} \hat{\boldsymbol{\phi}}\right)=\frac{m_{\mathrm{o}}}{4 \pi}\left[\frac{\partial\left(\sin ^{2} \theta / r^{2}\right)}{r \sin \theta \partial \theta} \hat{\boldsymbol{r}}-\frac{\partial(\sin \theta / r)}{r \partial r} \hat{\boldsymbol{\theta}}\right]$

$$
=\frac{m_{\mathrm{o}}}{4 \pi}\left[\frac{2 \cos \theta}{r^{3}} \hat{\boldsymbol{r}}+\frac{\sin \theta}{r^{3}} \hat{\boldsymbol{\theta}}\right]=\frac{m_{\mathrm{o}}}{4 \pi r^{3}}(2 \cos \theta \hat{\boldsymbol{r}}+\sin \theta \hat{\boldsymbol{\theta}})
$$

Problem 2) a) The symmetry of the problem dictates that the potential be a function of the radial distance $\rho=\sqrt{x^{2}+y^{2}}$ from the wire. At an observation point located in the $x y$-plane at a distance ρ from the origin, we will have

$$
\begin{aligned}
\psi(\boldsymbol{r}) & =\left(4 \pi \varepsilon_{0}\right)^{-1} \int_{-\infty}^{\infty}\left[\rho\left(\boldsymbol{r}^{\prime}\right) /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right] \mathrm{d} \boldsymbol{r}^{\prime} \\
& =\left(4 \pi \varepsilon_{0}\right)^{-1} \lim _{z_{0} \rightarrow \infty} \int_{-z_{0}}^{z_{0}} \frac{\lambda_{0} \delta\left(x^{\prime}\right) \delta\left(y^{\prime}\right)}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{\prime 2}}} \mathrm{~d} x^{\prime} \mathrm{d} y^{\prime} \mathrm{d} z^{\prime} \\
& =\frac{\lambda_{\mathrm{o}}}{2 \pi \varepsilon_{0}} \lim _{z_{0} \rightarrow \infty} \int_{0}^{z_{0}} \frac{\mathrm{~d} z^{\prime}}{\sqrt{x^{2}+y^{2}+z^{\prime 2}}}=\left.\frac{\lambda_{\mathrm{o}}}{2 \pi \varepsilon_{0}} \lim _{z_{0} \rightarrow \infty} \ln \left(z^{\prime}+\sqrt{\rho^{2}+z^{\prime 2}}\right)\right|_{z^{\prime}=0} ^{z_{0}} \quad \leftarrow \rho=\sqrt{x^{2}+y^{2}} \\
& =\frac{\lambda_{\mathrm{o}}}{2 \pi \varepsilon_{0}}\left[\lim _{z_{0} \rightarrow \infty} \ln \left(z_{0}+\sqrt{\rho^{2}+z_{0}^{2}}\right)-\ln \rho\right] .
\end{aligned}
$$

The first term on the right-hand-side of the above expression is infinitely large, but it does not vary with ρ and may, therefore, be ignored. The scalar potential is thus given by

$$
\psi(\boldsymbol{r})=-\left(\lambda_{0} / 2 \pi \varepsilon_{0}\right) \ln \rho
$$

b) Since $\boldsymbol{E}=-\nabla \psi$, we investigate the gradient of the neglected function $\ln \left(z_{0}+\sqrt{\rho^{2}+z_{0}{ }^{2}}\right)$ in the limit when $z_{0} \rightarrow \infty$, to see if it has any dependence on the radial distance ρ. We find

$$
\frac{\partial}{\partial \rho} \ln \left(z_{0}+\sqrt{\rho^{2}+z_{0}^{2}}\right)=\frac{\rho / \sqrt{\rho^{2}+z_{0}^{2}}}{z_{0}+\sqrt{\rho^{2}+z_{0}^{2}}}=\frac{\rho / z_{0}^{2}}{1+\left(\rho / z_{0}\right)^{2}+\sqrt{1+\left(\rho / z_{0}\right)^{2}}}
$$

Thus, for any finite value of ρ, in the limit when $z_{0} \rightarrow \infty$, the denominator of the above expression approaches 2 , while the numerator approaches zero. It is thus clear that, for sufficiently large z_{0}, the contribution to the E-field of $\ln \left(z_{0}+\sqrt{\rho^{2}+z_{0}}{ }^{2}\right)$ at any finite radial distance ρ is negligibly small.
c) The calculation of $\boldsymbol{A}(\boldsymbol{r})$ follows essentially the same steps as the above calculation of $\psi(\boldsymbol{r})$. We will have

$$
\begin{aligned}
\boldsymbol{A}(\boldsymbol{r}) & =\left(\mu_{0} / 4 \pi\right) \int_{-\infty}^{\infty}\left[\boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right) /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right] \mathrm{d} \boldsymbol{r}^{\prime}=\left(\mu_{0} / 4 \pi\right) \lim _{z_{0} \rightarrow \infty} \int_{-z_{0}}^{z_{0}} \frac{I_{0} \delta\left(x^{\prime}\right) \delta\left(y^{\prime}\right) \hat{\mathbf{z}}}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{\prime 2}}} \mathrm{~d} x^{\prime} \mathrm{d} y^{\prime} \mathrm{d} z^{\prime} \\
& =\frac{\mu_{0} I_{0} \hat{\mathbf{z}}}{2 \pi} \lim _{z_{0} \rightarrow \infty} \int_{0}^{z_{0}} \frac{\mathrm{~d} z^{\prime}}{\sqrt{x^{2}+y^{2}+z^{\prime 2}}}=\left.\frac{\mu_{0} I_{0} \hat{\mathbf{z}}}{2 \pi} \lim _{z_{0} \rightarrow \infty} \ln \left(z^{\prime}+\sqrt{\rho^{2}+z^{\prime 2}}\right)\right|_{z^{\prime}=0} ^{z_{0}} \\
& =\frac{\mu_{0} I_{0} \hat{\mathbf{z}}}{2 \pi}\left[\lim _{z_{0} \rightarrow \infty} \ln \left(z_{0}+\sqrt{\rho^{2}+z_{0}^{2}}\right)-\ln \rho\right] .
\end{aligned}
$$

Ignoring the first term on the right-hand-side of the above equation, we find the vector potential of the wire to be $\boldsymbol{A}(\boldsymbol{r})=-\left(\mu_{0} I_{0} \hat{\mathbf{Z}} / 2 \pi\right) \ln \rho$.

Problem 3)

a) $\boldsymbol{\nabla} \cdot \boldsymbol{D}(\boldsymbol{r}, t)=0, \quad \rho_{\text {free }}(\boldsymbol{r}, t)$ is set to zero.

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{H}(\boldsymbol{r}, t) & =\partial \boldsymbol{D}(\boldsymbol{r}, t) / \partial t, \quad \leftarrow \boldsymbol{J}_{\text {firee }}(\boldsymbol{r}, t) \text { is set to zero. } \\
\boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r}, t)= & -\partial \boldsymbol{B}(\boldsymbol{r}, t) / \partial t \quad \rightarrow \boldsymbol{\nabla} \times\left(\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}\right)=-\varepsilon_{0}\left(\partial \boldsymbol{M} / \partial t-\varepsilon_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{P}\right)-\mu_{0} \varepsilon_{0} \partial \boldsymbol{H} / \partial t \\
& \rightarrow \boldsymbol{\nabla} \times \boldsymbol{D}(\boldsymbol{r}, t)=-\varepsilon_{0} \boldsymbol{J}_{\text {bound }}^{(m)}-\mu_{0} \varepsilon_{0} \partial \boldsymbol{H}(\boldsymbol{r}, t) / \partial t \quad \leftarrow \boldsymbol{J}_{\text {bound }}^{(m)}=\partial \boldsymbol{M} / \partial t-\varepsilon_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{P}, \\
\boldsymbol{\nabla} \cdot \boldsymbol{B}(\boldsymbol{r}, t)=0 & \rightarrow \mu_{\mathrm{o}} \boldsymbol{\nabla} \cdot \boldsymbol{H}(\boldsymbol{r}, t)=\rho_{\text {bound }}^{(m)} \leftarrow \rho_{\text {bound }}^{(m)}=-\boldsymbol{\nabla} \cdot \boldsymbol{M}(\boldsymbol{r}, t) .
\end{aligned}
$$

b) Since Maxwell's $1^{\text {st }}$ equation ensures that $\boldsymbol{\nabla} \cdot \boldsymbol{D}=0$, we define the magnetic vector potential $\boldsymbol{A}^{(m)}(\boldsymbol{r}, t)$ such that $\boldsymbol{D}(r, t)=-\nabla \times \boldsymbol{A}^{(m)}(r, t)$. Substitution into Maxwell's $2^{\text {nd }}$ equation yields

$$
\boldsymbol{\nabla} \times\left[\boldsymbol{H}(\boldsymbol{r}, t)+\partial \boldsymbol{A}^{(m)}(\boldsymbol{r}, t) / \partial t\right]=0 \quad \rightarrow \quad \boldsymbol{H}(\boldsymbol{r}, t)+\partial \boldsymbol{A}^{(m)}(\boldsymbol{r}, t) / \partial t=-\boldsymbol{\nabla} \psi^{(m)}(\boldsymbol{r}, t) . \quad \leftarrow \text { Because } \boldsymbol{\nabla} \times \boldsymbol{\nabla} \psi^{(m)}=0 .
$$

c) Using the above magnetic potentials, Maxwell's $3^{\text {rd }}$ equation may be written as follows:

$$
\begin{aligned}
\boldsymbol{\nabla} & \times\left[-\boldsymbol{\nabla} \times \boldsymbol{A}^{(m)}(\boldsymbol{r}, t)\right]=-\varepsilon_{0} \boldsymbol{J}_{\text {bound }}^{(m)}-\mu_{0} \varepsilon_{0}(\partial / \partial t)\left[-\boldsymbol{\nabla} \psi^{(m)}(\boldsymbol{r}, t)-\partial \boldsymbol{A}^{(m)}(\boldsymbol{r}, t) / \partial t\right] \\
& \rightarrow \boldsymbol{\nabla}\left[\boldsymbol{\nabla} \cdot \boldsymbol{A}^{(m)}(\boldsymbol{r}, t)\right]-\boldsymbol{\nabla}^{2} \boldsymbol{A}^{(m)}(\boldsymbol{r}, t)=\varepsilon_{0} \boldsymbol{J}_{\text {bound }}^{(m)}-\left(1 / c^{2}\right) \boldsymbol{\nabla}\left[\partial \psi^{(m)}(\boldsymbol{r}, t) / \partial t\right]-\left(1 / c^{2}\right) \partial^{2} \boldsymbol{A}^{(m)}(\boldsymbol{r}, t) / \partial t^{2}
\end{aligned}
$$

$$
\rightarrow \quad \nabla\left[\boldsymbol{\nabla} \cdot \boldsymbol{A}^{(m)}(\boldsymbol{r}, t)+\left(1 / c^{2}\right) \partial \psi^{(m)}(\boldsymbol{r}, t) / \partial t\right]-\boldsymbol{\nabla}^{2} \boldsymbol{A}^{(m)}(\boldsymbol{r}, t)+\left(1 / c^{2}\right) \partial^{2} \boldsymbol{A}^{(m)}(\boldsymbol{r}, t) / \partial t^{2}=\varepsilon_{0} \boldsymbol{J}_{\text {bound }}^{(m)} .
$$

Clearly, eliminating $\psi^{(m)}$ from the above equation requires the same gauge for the magnetic potentials as the Lorenz gauge that was defined for the electric potentials, that is,

$$
\boldsymbol{\nabla} \cdot \boldsymbol{A}^{(m)}(\boldsymbol{r}, t)+\left(1 / c^{2}\right) \partial \psi^{(m)}(\boldsymbol{r}, t) / \partial t=0 . \quad \leftarrow \text { Equivalent of Lorenz gauge }
$$

d) Maxwell's $3{ }^{\text {rd }}$ equation in conjunction with the Lorenz-equivalent gauge now becomes

$$
\nabla^{2} \boldsymbol{A}^{(m)}(\boldsymbol{r}, t)-\left(1 / c^{2}\right) \partial^{2} \boldsymbol{A}^{(m)}(\boldsymbol{r}, t) / \partial t^{2}=-\varepsilon_{0} \boldsymbol{J}_{\text {bound }}^{(m)} .
$$

This wave equation for the magnetic vector potential, having $\varepsilon_{0} \boldsymbol{J}_{\text {bound }}^{(m)}$ for the source term, is the counterpart of the equation for the standard vector potential, where the source term is $\mu_{0} \boldsymbol{J}_{\text {total }}^{(e)}$.

The wave equation for $\psi^{(m)}(\boldsymbol{r}, t)$ could similarly be derived by substituting into Maxwell's $4^{\text {th }}$ equation the expressions that relate \boldsymbol{D} and \boldsymbol{H} to $\boldsymbol{A}^{(m)}$ and $\psi^{(m)}$. The final result, after taking account of the Lorenz-equivalent gauge, is

$$
\mu_{\mathrm{o}} \boldsymbol{\nabla} \cdot\left[-\nabla \psi^{(m)}-\partial \boldsymbol{A}^{(m)} / \partial t\right]=\rho_{\text {bound }}^{(m)} \quad \rightarrow \quad \nabla^{2} \psi^{(m)}(\boldsymbol{r}, t)-\left(1 / c^{2}\right) \partial^{2} \psi^{(m)}(\boldsymbol{r}, t) / \partial t^{2}=-\mu_{\mathrm{o}}^{-1} \rho_{\text {bound }}^{(m)}(\boldsymbol{r}, t)
$$

Once again we have an equation similar to the standard wave equation for the (electric) scalar potential, except that the source term here is $\mu_{0}^{-1} \rho_{\text {bound }}^{(m)}$, rather than $\varepsilon_{0}^{-1} \rho_{\text {total }}^{(e)}$.
e) By analogy with the standard wave equation, we write the solutions to the preceding wave equations for magnetic potentials as follows:

$$
\begin{aligned}
\psi^{(m)}(\boldsymbol{r}, t) & =\left(1 / 4 \pi \mu_{\mathrm{o}}\right) \int_{-\infty}^{\infty} \frac{\rho_{\text {bound }}^{(m)}\left(\boldsymbol{r}^{\prime}, t-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| / c\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} \boldsymbol{r}^{\prime} \\
\boldsymbol{A}^{(m)}(\boldsymbol{r}, t) & =\left(\varepsilon_{0} / 4 \pi\right) \int_{-\infty}^{\infty} \frac{\boldsymbol{J}_{\text {bound }}^{(m)}\left(\boldsymbol{r}^{\prime}, t-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| / c\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} \boldsymbol{r}^{\prime}
\end{aligned}
$$

