Problem 1) a) Because of symmetry, the H-field cannot depend on x or z. Take a rectangular loop $\ell_{x} \times \ell_{y}$ parallel to the $x y$-plane and write the integral form of Ampere's law, $\boldsymbol{\nabla} \times \boldsymbol{H}=\boldsymbol{J}_{\text {free }}$, for this loop. The contributions of ℓ_{y} to the loop integral cancel out, leaving only the contributions of ℓ_{x} on opposite sides of the current sheet. Therefore, $2 H_{x} \ell_{x}=J_{\text {so }} \ell_{x}$, where $J_{50} \ell_{x}$ is the current crossing the loop. The magnitude of the H-field is thus independent of y, although its direction depends on whether y is positive or negative. Taking the right-hand rule into account, the final result is

$$
\boldsymbol{H}(\boldsymbol{r}, t)=-\frac{1}{2} \operatorname{sign}(y) J_{s 0} \hat{\boldsymbol{x}} .
$$

Note: Using symmetry and Maxwell's $4^{\text {th }}$ equation, $\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$, it is easy to see why H_{y} must be zero everywhere: Take a cylinder whose axis is parallel to y and which the $x z$-plane cuts in the middle, then use the fact that the net flux of \boldsymbol{H} into or out of the cylinder must be zero. Similarly, Maxwell's $2^{\text {nd }}$ equation can be used to show that H_{z} is independent of y; the argument parallels that used above to evaluate H_{x}, except that the rectangular loop is now chosen in the $y z$-plane. Since H_{z} is already known to be independent of x and z, we conclude that it must be constant through the entire space. Showing that H_{z} is identically zero, however, requires the full solution of Maxwell's equations, which is done in part (b).
b) Fourier transforming the current density $\boldsymbol{J}(r, t)=J_{\mathrm{s} 0} \delta(y) \hat{\mathbf{z}}$ yields

$$
\boldsymbol{J}(\boldsymbol{k}, \omega)=\int_{-\infty}^{\infty} J_{s 0} \delta(y) \hat{\mathbf{z}} \exp [-\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \mathrm{d} \boldsymbol{r} \mathrm{~d} t=(2 \pi)^{3} J_{s 0} \delta\left(k_{x}\right) \delta\left(k_{z}\right) \delta(\omega) \hat{\mathbf{z}} .
$$

The H-field is thus given by

$$
\begin{aligned}
\boldsymbol{H}(\boldsymbol{r}, t) & =\mu_{0}^{-1} \boldsymbol{B}(\boldsymbol{r}, t)=\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r}, t)=(2 \pi)^{-4} \int_{-\infty}^{\infty} \frac{\mathrm{i} \boldsymbol{k} \times \boldsymbol{J}(\boldsymbol{k}, \omega)}{k^{2}-(\omega / c)^{2}} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \mathrm{d} \boldsymbol{k} \mathrm{~d} \omega \\
& =\frac{\mathrm{i} J_{s 0}}{2 \pi} \int_{-\infty}^{\infty} \frac{(\boldsymbol{k} \times \hat{\mathbf{z}}) \delta\left(k_{x}\right) \delta\left(k_{z}\right) \delta(\omega)}{k^{2}-(\omega / c)^{2}} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \mathrm{d} \boldsymbol{k} \mathrm{~d} \omega \\
& =\frac{\mathrm{i} J_{s 0}}{2 \pi} \int_{-\infty}^{\infty} \frac{k_{y} \hat{\boldsymbol{y}} \times \hat{\mathbf{z}}}{k_{y}^{2}} \exp \left(\mathrm{i} k_{y} y\right) \mathrm{d} k_{y}=\mathrm{i} J_{s 0} \hat{\boldsymbol{x}}(2 \pi)^{-1} \int_{-\infty}^{\infty} \frac{\exp \left(\mathrm{i} k_{y} y\right)}{k_{y}} \mathrm{~d} k_{y}=-\frac{1}{2} \operatorname{sign}(y) J_{s 0} \hat{\boldsymbol{x}} .
\end{aligned}
$$

Problem 2) a) Because of symmetry, the E-field is independent of ϕ and z. Take a cylinder of radius ρ and height h, and write the integral form of Maxwell's first equation, $\boldsymbol{\nabla} \cdot \varepsilon_{0} \boldsymbol{E}=\rho_{\text {free }}$, for this cylinder. The contributions to the integral of the top and bottom surfaces of the cylinder cancel out, leaving only the contribution of the cylindrical side-wall, which is $2 \pi \rho h \varepsilon_{0} E_{\rho}(\rho)$. Therefore, $2 \pi \rho h \varepsilon_{0} E_{\rho}(\rho)=2 \pi R h \sigma_{\text {so }}$, where the right-hand-side of the equation gives the total electrical charge inside the cylinder of radius ρ, provided, of course, that $\rho>R$. Consequently,
$E_{\rho}(\rho)=R \sigma_{s 0} /\left(\rho \varepsilon_{0}\right)$ when $\rho>R$, and $E_{\rho}(\rho)=0$ when $\rho<R$. From Maxwell's $3^{\text {rd }}$ equation, $\boldsymbol{\nabla} \times \boldsymbol{E}=0$, we conclude that $E_{\phi}=0$, otherwise a circular loop of radius ρ, parallel to the $x y$-plane and centered on the z-axis, will have a nonzero line integral. As for E_{z}, consider the rectangular loop $\ell_{\rho} \times \ell_{z}$ shown in the figure. The contributions of ℓ_{ρ} to the line-integral of the E-field around the loop cancel out because E_{ρ} is independent of z. For the contributions of the vertical legs, ℓ_{z}, to also cancel out, it is necessary for E_{z} to be independent of ρ. We thus see that E_{z} must
 be constant through the entire space. In fact, because of the system's up-down symmetry, it is not difficult to see that E_{z} must be identically zero everywhere: There is as much reason for the E-field to point up as there is for it to point down. Therefore $E_{Z}=0$ and we have

$$
\boldsymbol{E}(\boldsymbol{r}, t)= \begin{cases}\left(R \sigma_{s 0} / \varepsilon_{0} \rho\right) \hat{\boldsymbol{\rho}} ; & \rho>R, \\ 0 ; & \rho<R .\end{cases}
$$

b) The Fourier transform of the electric charge-density, $\rho(\boldsymbol{r}, t)=\sigma_{\mathrm{s} 0} \delta(\rho-R)$, is given by

$$
\begin{aligned}
\rho(\boldsymbol{k}, \omega) & =\int_{-\infty}^{\infty} \sigma_{s 0} \delta(\rho-R) \exp [-\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \mathrm{d} \boldsymbol{r} \mathrm{~d} t \\
& =(2 \pi)^{2} \sigma_{s 0} \delta\left(k_{z}\right) \delta(\omega) \int_{\rho=0}^{\infty} \int_{\phi=0}^{2 \pi} \delta(\rho-R) \exp \left(-\mathrm{i} k_{\|} \rho \cos \phi\right) \rho \mathrm{d} \rho \mathrm{~d} \phi \\
& =(2 \pi)^{2} R \sigma_{s 0} \delta\left(k_{z}\right) \delta(\omega) \int_{\phi=0}^{2 \pi} \exp \left(-\mathrm{i} k_{\| \mid} R \cos \phi\right) \mathrm{d} \phi \\
& =(2 \pi)^{3} R \sigma_{s 0} \delta\left(k_{z}\right) \delta(\omega) J_{0}\left(k_{\|} R\right) .
\end{aligned}
$$

The E-field is thus obtained as follows:

$$
\begin{aligned}
& \boldsymbol{E}(\boldsymbol{r}, t)=-\nabla \psi(\boldsymbol{r}, t)=-(2 \pi)^{-4} \int_{-\infty}^{\infty} \frac{\mathrm{i} \boldsymbol{k} \rho(\boldsymbol{k}, \omega)}{\varepsilon_{0}\left[k^{2}-(\omega / c)^{2}\right]} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \mathrm{d} \boldsymbol{k} \mathrm{~d} \omega \\
& =-\frac{\mathrm{i} R \sigma_{s 0}}{2 \pi \varepsilon_{0}} \int_{-\infty}^{\infty} \frac{\boldsymbol{k} \delta\left(k_{z}\right) \delta(\omega) J_{0}\left(k_{\|} R\right)}{k^{2}-(\omega / c)^{2}} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \mathrm{d} \boldsymbol{k} \mathrm{~d} \omega \\
& =-\frac{\mathrm{i} R \sigma_{s 0}}{2 \pi \varepsilon_{0}} \int_{k_{\| \mid}=0}^{\infty} \int_{\phi=0}^{2 \pi} \frac{k_{\|} \cos \phi \hat{\boldsymbol{\rho}} J_{0}\left(k_{\|} R\right)}{k_{\|}^{2}} \exp \left(\mathrm{i} k_{\|} \rho \cos \phi\right) k_{\|} \mathrm{d} k_{\|} \mathrm{d} \phi \\
& =-\frac{\mathrm{i} R \sigma_{s 0} \hat{\boldsymbol{\rho}}}{2 \pi \varepsilon_{0}} \int_{k_{\|}=0}^{\infty} J_{0}\left(k_{\| \mid} R\right) \int_{\phi=0}^{2 \pi} \cos \phi \exp \left(\mathrm{i} k_{\|} \rho \cos \phi\right) \mathrm{d} \phi \mathrm{~d} k_{\|} \\
& =\frac{R \sigma_{\mathrm{so}} \hat{\rho}}{\varepsilon_{0}} \int_{0}^{\infty} J_{0}\left(k_{\|} R\right) J_{1}\left(k_{\|} \rho\right) \mathrm{d} k_{\|}= \begin{cases}\left(R \sigma_{s o} / \varepsilon_{0} \rho\right) \hat{\boldsymbol{\rho}} ; & \rho>R, \\
0 ; & \rho<R .\end{cases}
\end{aligned}
$$

