
1 

Opti 501 1st Midterm Solutions (9/28/2021) Time: 75 minutes 

Problem 1) In the cylindrical system, 𝝆𝝆� = (cos𝜙𝜙)𝒙𝒙� + (sin𝜙𝜙)𝒚𝒚�. In the spherical system, 

 𝒓𝒓� = (sin𝜃𝜃 cos𝜙𝜙)𝒙𝒙� + (sin𝜃𝜃 sin𝜙𝜙)𝒚𝒚� + (cos𝜃𝜃)𝒛𝒛�. 

 𝜽𝜽� = (cos𝜃𝜃 cos𝜙𝜙)𝒙𝒙� + (cos 𝜃𝜃 sin𝜙𝜙)𝒚𝒚� − (sin𝜃𝜃)𝒛𝒛�. 

 𝒛𝒛� = (cos 𝜃𝜃)𝒓𝒓� − (sin𝜃𝜃)𝜽𝜽�. 
 
Problem 2) a) Integrating the 𝐷𝐷-field over the surface of the sphere of radius 𝑟𝑟 yields 
4𝜋𝜋𝑟𝑟2(𝜀𝜀0𝐸𝐸). This must equal the total charge 𝑞𝑞 inside the sphere. Therefore, 𝑬𝑬 = 𝑞𝑞𝒓𝒓� (4𝜋𝜋𝜀𝜀0𝑟𝑟2)⁄ . 

b) If the 𝐸𝐸-field vectors happen to be tilted, as depicted in Fig.(b), then standing above the charge 
makes it appear that the 𝐸𝐸-field is rotated counterclockwise, whereas standing below the charge 
would make the direction of rotation appear as clockwise. Since it should not matter whether the 
observer is on one side or the other, there can be no such tilt. 

Note that one cannot make the argument by looking at the charge from one side only. If you 
say, it appears counterclockwise from above but why not clockwise, then the answer would be: 
the sign of the charge dictates whether it rotates clockwise or counterclockwise. In other words, 
there is a difference between positive and negative charges in this regard. However, by looking 
at the same charge (either positive or negative) from above as well as below, one can see that the 
symmetry of space is broken and that, therefore, there cannot be a tilt one way or the other. 

c) The azimuthal tilt of the 𝐸𝐸-field as depicted in Fig.(b) would mean that the integral of 𝑬𝑬(𝒓𝒓) 
around a circle of radius 𝑟𝑟 would be nonzero. This violates Maxwell’s 3rd equation. Therefore, 
there cannot be a tilt of 𝑬𝑬(𝒓𝒓), clockwise or counterclockwise, away from the radial direction 𝒓𝒓. 
 

Problem 3) 𝜵𝜵 × 𝑨𝑨(𝒓𝒓) = 𝜕𝜕(𝜌𝜌𝐴𝐴𝜙𝜙)

𝜌𝜌𝜕𝜕𝜌𝜌
𝒛𝒛� = �

1
𝜌𝜌
�d(𝐴𝐴0𝜌𝜌2)

d𝜌𝜌
� 𝒛𝒛�;            𝜌𝜌 < 𝑅𝑅,

1
𝜌𝜌
�d(𝐴𝐴0𝑅𝑅2)

d𝜌𝜌
� 𝒛𝒛�;            𝜌𝜌 > 𝑅𝑅.

     = �
2𝐴𝐴0𝒛𝒛�;           𝜌𝜌 < 𝑅𝑅,

0;                  𝜌𝜌 > 𝑅𝑅.
 

It is seen that the curl of 𝑨𝑨(𝒓𝒓) is zero everywhere outside the cylinder of radius 𝑅𝑅, whereas it 
equals the constant field 2𝐴𝐴0𝒛𝒛� inside the cylinder. 
 
Problem 4) a) The electric and magnetic fields at the point (𝑟𝑟, 𝜃𝜃,𝜙𝜙) are given by 

 𝑬𝑬(𝒓𝒓) = �
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Thus, the total energy density is the sum of the 𝐸𝐸-field and 𝐻𝐻-field energy densities, as follows: 

 ℰ(𝒓𝒓) = ½𝜀𝜀0𝐸𝐸2 + ½𝜇𝜇0𝐻𝐻2 = �
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b) Inside the sphere, the Poynting vector is zero (because 𝑬𝑬 = 0), whereas in the region outside 
the sphere we have 
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 𝑺𝑺(𝒓𝒓) = 𝑬𝑬(𝒓𝒓) × 𝑯𝑯(𝒓𝒓) = −� 𝑄𝑄𝐼𝐼
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� 𝜽𝜽� 

 𝜵𝜵 ∙ 𝑺𝑺(𝒓𝒓) = 1
𝜋𝜋 sin𝜃𝜃

𝜕𝜕
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(sin𝜃𝜃 𝑆𝑆𝜃𝜃) = 0,      ←  (sin𝜃𝜃 ≠ 0;   that is, 0 < 𝜃𝜃 < 𝜋𝜋). 

Along the 𝑧𝑧-axis, the Poynting vector is directed toward the wire where 𝑧𝑧 > 𝑅𝑅 and 𝜃𝜃 → 0, 
and away from the wire where 𝑧𝑧 < −𝑅𝑅 and 𝜃𝜃 → 𝜋𝜋. Taking a small cylinder of radius 𝜀𝜀 and 
height 𝛿𝛿, then imagining it placed around the wire at any elevation 𝑧𝑧 along the wire and outside 
the sphere (i.e., where |𝑧𝑧| > 𝑅𝑅), we find the time-rate of flow of electromagnetic energy out of 
the cylinder (below the sphere) and into the cylinder (above the sphere) to be 

 ±(2𝜋𝜋𝜀𝜀𝛿𝛿) � 𝑄𝑄𝐼𝐼
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. 

c) In the preceding equation, the product of the current 𝐼𝐼 of the wire, the 𝐸𝐸-field acting on the 
wire at 𝑧𝑧, and the height 𝛿𝛿 of the small cylinder, corresponds to the integral of 𝑬𝑬 ∙ 𝑱𝑱free over a 
short segment (length = 𝛿𝛿) of the wire. Thus, the energy emanates from the wire in the region 
below the sphere, where the 𝐸𝐸-field opposes the current, and re-enters the wire in the region 
above the sphere, where the 𝐸𝐸-field is aligned with the direction of the current. 
 

𝑆𝑆(𝒓𝒓) → ∞ as 𝜃𝜃 → 0 and also as 𝜃𝜃 → 𝜋𝜋. 

area of the curved cylinder surface 

𝑟𝑟 sin 𝜃𝜃 = 𝜀𝜀;  also |𝑧𝑧| = |𝑟𝑟 cos𝜃𝜃| ≅ 𝑟𝑟 


