Problem 1) Invoking the product rule of differentiation, namely, $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$, we write

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot & (\psi \boldsymbol{A})=\frac{\partial\left(r^{2} \psi A_{r}\right)}{r^{2} \partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta \psi A_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial\left(\psi A_{\varphi}\right)}{\partial \varphi} \\
& =\frac{1}{r^{2}}\left[\psi \frac{\partial\left(r^{2} A_{r}\right)}{\partial r}+r^{2} A_{r} \frac{\partial \psi}{\partial r}\right]+\frac{1}{r \sin \theta}\left[\psi \frac{\partial\left(\sin \theta A_{\theta}\right)}{\partial \theta}+\sin \theta A_{\theta} \frac{\partial \psi}{\partial \theta}\right]+\frac{1}{r \sin \theta}\left(\psi \frac{\partial A_{\varphi}}{\partial \varphi}+A_{\varphi} \frac{\partial \psi}{\partial \varphi}\right) \\
& =\psi\left[\frac{\partial\left(r^{2} A_{r}\right)}{r^{2} \partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta A_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi}\right]+\left(A_{r} \frac{\partial \psi}{\partial r}+A_{\theta} \frac{\partial \psi}{r \partial \theta}+A_{\varphi} \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi}\right) \\
& =\psi \boldsymbol{\nabla} \cdot \boldsymbol{A}+\boldsymbol{A} \cdot \boldsymbol{\nabla} \psi .
\end{aligned}
$$

Problem 2)

a) In the free-space region between the two mirrors, $\rho_{\text {free }}=0, \boldsymbol{J}_{\text {free }}=0, \boldsymbol{P}=0$, and $\boldsymbol{M}=0$. Maxwell's equations thus reduce to
(i) $\boldsymbol{\nabla} \cdot \boldsymbol{E}=0$;
(ii) $\boldsymbol{\nabla} \times \boldsymbol{H}=\varepsilon_{0} \partial_{t} \boldsymbol{E}$;
(iii) $\boldsymbol{\nabla} \times \boldsymbol{E}=-\mu_{0} \partial_{t} \boldsymbol{H}$;
(iv) $\boldsymbol{\nabla} \cdot \boldsymbol{H}=0$.

To confirm that the $1^{\text {st }}$ equation is satisfied, we write

$$
\boldsymbol{\nabla} \cdot \boldsymbol{E}=\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z}=\partial_{x} E_{x}=E_{0} \partial_{x}[\sin (\omega z / c) \sin (\omega t)]=0 .
$$

As for the second equation, we have

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{H} & =\left(\partial_{x} H_{y}\right) \widehat{\mathbf{z}}-\left(\partial_{z} H_{y}\right) \widehat{\boldsymbol{x}}=-\left(\partial_{z} H_{y}\right) \widehat{\boldsymbol{x}}=-\left(E_{0} / Z_{0}\right) \partial_{z}[\cos (\omega z / c) \cos (\omega t)] \widehat{\boldsymbol{x}} \\
& =\left(E_{0} / Z_{0}\right)(\omega / c) \sin (\omega z / c) \cos (\omega t) \widehat{\boldsymbol{x}}=\varepsilon_{0} E_{0} \omega \sin (\omega z / c) \cos (\omega t) \widehat{\boldsymbol{x}} . \\
\partial_{t} \boldsymbol{D} & =\varepsilon_{0} \partial_{t} \boldsymbol{E}=\varepsilon_{0} \partial_{t}\left[E_{0} \sin (\omega z / c) \sin (\omega t)\right] \widehat{\boldsymbol{x}}=\varepsilon_{0} E_{0} \omega \sin (\omega z / c) \cos (\omega t) \widehat{\boldsymbol{x}} .
\end{aligned}
$$

Clearly, the $2^{\text {nd }}$ equation is also satisfied. To verify the $3^{\text {rd }}$ equation, we write

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{E} & =\left(\partial_{z} E_{x}\right) \hat{\boldsymbol{y}}-\left(\partial_{y} E_{x}\right) \hat{\mathbf{z}}=\left(\partial_{z} E_{x}\right) \widehat{\boldsymbol{y}} \\
& =E_{0} \partial_{z}[\sin (\omega z / c) \sin (\omega t)] \widehat{\boldsymbol{y}}=E_{0}(\omega / c) \cos (\omega z / c) \sin (\omega t) \widehat{\boldsymbol{y}} . \\
\partial_{t} \boldsymbol{B}=\mu_{0} \partial_{t} \boldsymbol{H}= & \mu_{0} \partial_{t}\left[\left(E_{0} / Z_{0}\right) \cos (\omega z / c) \cos (\omega t)\right] \widehat{\boldsymbol{y}} \\
& =-\mu_{0}\left(E_{0} / Z_{0}\right) \omega \cos (\omega z / c) \sin (\omega t) \widehat{\boldsymbol{y}}=-E_{0}(\omega / c) \cos (\omega z / c) \sin (\omega t) \widehat{\boldsymbol{y}} .
\end{aligned}
$$

The above equations confirm that $\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}$. Finally, the $4^{\text {th }}$ equation is verified as follows:

$$
\boldsymbol{\nabla} \cdot \boldsymbol{H}=\partial_{x} H_{x}+\partial_{y} H_{y}+\partial_{z} H_{z}=\partial_{y} H_{y}=\left(E_{0} / Z_{0}\right) \partial_{y}[\sin (\omega z / c) \sin (\omega t)]=0 .
$$

b) At the interior facets of the mirrors, where $z= \pm d / 2$, the E-field vanishes, simply because $\sin (\omega z / c)=\sin (\pm \omega d / 2 c)= \pm \sin \left(\omega n \lambda_{0} / 2 c\right)= \pm \sin (n \pi)=0$. The tangential component E_{x} of the E-field is thus continuous, given that the E-field inside the PEC mirrors is also zero.

As for the perpendicular component of the E-field, Maxwell's first equation demands that any discontinuity in the perpendicular component of the D-field be accounted for by the presence of a surface charge-density σ_{s} at a mirror surface. In this problem, however, $D_{\perp}=\varepsilon_{0} E_{z}$ is zero everywhere in the system, indicating that the mirror surfaces do not contain any free charges.
c) The H-field inside the PEC mirrors is zero, whereas immediately in front of the interior facet of each mirror, the H-field is given by $(-1)^{n}\left(E_{0} / Z_{0}\right) \cos (\omega t) \widehat{\boldsymbol{y}}$. This is because, at $z= \pm d / 2$, $\cos (\omega z / c)=\cos (\pm \omega d / 2 c)=\cos (n \pi)=(-1)^{n}$. Since the discontinuity of tangential H-field must be accompanied by a corresponding surface current-density J_{S}, we conclude that $J_{S}=$ $(-1)^{n}\left(E_{0} / Z_{0}\right) \cos (\omega t) \widehat{\boldsymbol{x}}$ at $z=d / 2$, and $\boldsymbol{J}_{s}=(-1)^{n+1}\left(E_{0} / Z_{0}\right) \cos (\omega t) \hat{\boldsymbol{x}}$ at $z=-d / 2$.

At the interior facet of each mirror, according to Maxwell's $4^{\text {th }}$ equation, the perpendicular B-field component must be continuous. This is guaranteed in the present problem by the fact that $B_{z}=\mu_{0} H_{z}$ is everywhere equal to zero.

Problem 3)

a) $\boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho_{\text {free }} \rightarrow \varepsilon_{0} \boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho_{\text {free }}-\boldsymbol{\nabla} \cdot \boldsymbol{P}$. Conjugating both sides of the equation, we find $\varepsilon_{0} \boldsymbol{\nabla} \cdot \boldsymbol{E}^{*}=\rho_{\text {free }}^{*}-\boldsymbol{\nabla} \cdot \boldsymbol{P}^{*}$, which indicates that the source distributions $\rho_{\text {free }}^{*}$ and \boldsymbol{P}^{*} together give rise to the E-field distribution \boldsymbol{E}^{*}.
b) Upon adding Maxwell's $1^{\text {st }}$ equation to its complex conjugate, one arrives at

$$
\varepsilon_{0} \boldsymbol{\nabla} \cdot\left(\boldsymbol{E}+\boldsymbol{E}^{*}\right)=\left(\rho_{\text {free }}+\rho_{\text {free }}^{*}\right)-\boldsymbol{\nabla} \cdot\left(\boldsymbol{P}+\boldsymbol{P}^{*}\right)
$$

If we now divide both sides of the above equation by 2 , we can conclude that the combined source distributions $1 / 2\left(\rho_{\text {free }}+\rho_{\text {free }}^{*}\right)=\operatorname{Real}\left(\rho_{\text {free }}\right)=\rho^{\prime}$ and $1 / 2\left(\boldsymbol{P}+\boldsymbol{P}^{*}\right)=\operatorname{Real}(\boldsymbol{P})=\boldsymbol{P}^{\prime}$ give rise to the E-field distribution $1 / 2\left(\boldsymbol{E}+\boldsymbol{E}^{*}\right)=\operatorname{Real}(\boldsymbol{E})=\boldsymbol{E}^{\prime}$.
c) Subtracting from Maxwell's $1^{\text {st }}$ equation its complex conjugate, one arrives at

$$
\varepsilon_{0} \boldsymbol{\nabla} \cdot\left(\boldsymbol{E}-\boldsymbol{E}^{*}\right)=\left(\rho_{\text {free }}-\rho_{\text {free }}^{*}\right)-\boldsymbol{\nabla} \cdot\left(\boldsymbol{P}-\boldsymbol{P}^{*}\right)
$$

If we now divide both sides of the above equation by 2 i , we can conclude that the combined source distributions $\left(\rho_{\text {free }}-\rho_{\text {free }}^{*}\right) / 2 \mathrm{i}=\operatorname{Imag}\left(\rho_{\text {free }}\right)=\rho^{\prime \prime}$ and $\left(\boldsymbol{P}-\boldsymbol{P}^{*}\right) / 2 \mathrm{i}=\operatorname{Imag}(\boldsymbol{P})=\boldsymbol{P}^{\prime \prime}$ give rise to the E-field distribution $\left(\boldsymbol{E}-\boldsymbol{E}^{*}\right) / 2 \mathrm{i}=\operatorname{Imag}(\boldsymbol{E})=\boldsymbol{E}^{\prime \prime}$.
d) The same procedures as above, applied to all four of Maxwell's equations, reveal that, if the (complex-valued) sources $\rho_{\text {free }}, \boldsymbol{J}_{\text {free }}, \boldsymbol{P}$ and \boldsymbol{M} produce the fields \boldsymbol{E} and \boldsymbol{H}, then the source distributions $\rho_{\text {free }}^{*}, \boldsymbol{J}_{\text {free }}^{*}, \boldsymbol{P}^{*}$ and \boldsymbol{M}^{*} will produce the fields \boldsymbol{E}^{*} and \boldsymbol{H}^{*}. By the same token, the real parts $\rho_{\text {free }}^{\prime}, \boldsymbol{J}_{\text {free }}^{\prime}, \boldsymbol{P}^{\prime}$ and \boldsymbol{M}^{\prime} of the sources give rise to \boldsymbol{E}^{\prime} and \boldsymbol{H}^{\prime}. Similarly, the imaginary parts $\rho_{\text {free }}^{\prime \prime}, \boldsymbol{J}_{\text {free }}^{\prime \prime}, \boldsymbol{P}^{\prime \prime}$ and $\boldsymbol{M}^{\prime \prime}$ of the sources produce the fields $\boldsymbol{E}^{\prime \prime}$ and $\boldsymbol{H}^{\prime \prime}$.

