Problem 1) Invoking the product rule of differentiation, namely, (fg)' = f'g + fg', we write

$$\nabla \cdot (\psi A) = \frac{\partial (r^2 \psi A_r)}{r^2 \partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta \psi A_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial (\psi A_\varphi)}{\partial \varphi}$$

$$= \frac{1}{r^2} \left[\psi \frac{\partial (r^2 A_r)}{\partial r} + r^2 A_r \frac{\partial \psi}{\partial r} \right] + \frac{1}{r \sin \theta} \left[\psi \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \sin \theta A_\theta \frac{\partial \psi}{\partial \theta} \right] + \frac{1}{r \sin \theta} \left(\psi \frac{\partial A_\varphi}{\partial \varphi} + A_\varphi \frac{\partial \psi}{\partial \varphi} \right)$$

$$= \psi \left[\frac{\partial (r^2 A_r)}{r^2 \partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi} \right] + \left(A_r \frac{\partial \psi}{\partial r} + A_\theta \frac{\partial \psi}{r \partial \theta} + A_\varphi \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi} \right)$$

$$= \psi \nabla \cdot A + A \cdot \nabla \psi.$$

Problem 2)

a) In the free-space region between the two mirrors, $\rho_{\text{free}} = 0$, $J_{\text{free}} = 0$, P = 0, and M = 0. Maxwell's equations thus reduce to

(i)
$$\nabla \cdot \boldsymbol{E} = 0$$
; (ii) $\nabla \times \boldsymbol{H} = \varepsilon_0 \partial_t \boldsymbol{E}$; (iii) $\nabla \times \boldsymbol{E} = -\mu_0 \partial_t \boldsymbol{H}$; (iv) $\nabla \cdot \boldsymbol{H} = 0$.

To confirm that the 1st equation is satisfied, we write

$$\nabla \cdot E = \partial_x E_x + \partial_y E_y + \partial_z E_z = \partial_x E_x = E_0 \partial_x [\sin(\omega z/c) \sin(\omega t)] = 0.$$

As for the second equation, we have

$$\nabla \times \mathbf{H} = (\partial_x H_y) \hat{\mathbf{z}} - (\partial_z H_y) \hat{\mathbf{x}} = -(\partial_z H_y) \hat{\mathbf{x}} = -(E_0/Z_0) \partial_z [\cos(\omega z/c) \cos(\omega t)] \hat{\mathbf{x}}$$
$$= (E_0/Z_0) (\omega/c) \sin(\omega z/c) \cos(\omega t) \hat{\mathbf{x}} = \varepsilon_0 E_0 \omega \sin(\omega z/c) \cos(\omega t) \hat{\mathbf{x}}.$$

$$\partial_t \mathbf{D} = \varepsilon_0 \partial_t \mathbf{E} = \varepsilon_0 \partial_t [E_0 \sin(\omega z/c) \sin(\omega t)] \hat{\mathbf{x}} = \varepsilon_0 E_0 \omega \sin(\omega z/c) \cos(\omega t) \hat{\mathbf{x}}.$$

Clearly, the 2nd equation is also satisfied. To verify the 3rd equation, we write

$$\nabla \times E = (\partial_z E_x) \hat{y} - (\partial_y E_x) \hat{z} = (\partial_z E_x) \hat{y}$$

= $E_0 \partial_z [\sin(\omega z/c) \sin(\omega t)] \hat{y} = E_0 (\omega/c) \cos(\omega z/c) \sin(\omega t) \hat{y}.$

$$\partial_t \boldsymbol{B} = \mu_0 \partial_t \boldsymbol{H} = \mu_0 \partial_t [(E_0/Z_0) \cos(\omega z/c) \cos(\omega t)] \hat{\boldsymbol{y}}$$

= $-\mu_0 (E_0/Z_0) \omega \cos(\omega z/c) \sin(\omega t) \hat{\boldsymbol{y}} = -E_0 (\omega/c) \cos(\omega z/c) \sin(\omega t) \hat{\boldsymbol{y}}.$

The above equations confirm that $\nabla \times E = -\partial_t B$. Finally, the 4th equation is verified as follows:

$$\nabla \cdot H = \partial_x H_x + \partial_y H_y + \partial_z H_z = \partial_y H_y = (E_0/Z_0)\partial_y [\sin(\omega z/c)\sin(\omega t)] = 0.$$

b) At the interior facets of the mirrors, where $z = \pm d/2$, the *E*-field vanishes, simply because $\sin(\omega z/c) = \sin(\pm \omega d/2c) = \pm \sin(\omega n\lambda_0/2c) = \pm \sin(n\pi) = 0$. The tangential component E_x of the *E*-field is thus continuous, given that the *E*-field inside the PEC mirrors is also zero.

As for the perpendicular component of the *E*-field, Maxwell's first equation demands that any discontinuity in the perpendicular component of the *D*-field be accounted for by the presence of a surface charge-density σ_s at a mirror surface. In this problem, however, $D_{\perp} = \varepsilon_0 E_z$ is zero everywhere in the system, indicating that the mirror surfaces do not contain any free charges. c) The *H*-field inside the PEC mirrors is zero, whereas immediately in front of the interior facet of each mirror, the *H*-field is given by $(-1)^n (E_0/Z_0) \cos(\omega t) \hat{y}$. This is because, at $z = \pm d/2$, $\cos(\omega z/c) = \cos(\pm \omega d/2c) = \cos(n\pi) = (-1)^n$. Since the discontinuity of tangential *H*-field must be accompanied by a corresponding surface current-density J_s , we conclude that $J_s = (-1)^n (E_0/Z_0) \cos(\omega t) \hat{x}$ at z = d/2, and $J_s = (-1)^{n+1} (E_0/Z_0) \cos(\omega t) \hat{x}$ at z = -d/2.

At the interior facet of each mirror, according to Maxwell's 4th equation, the perpendicular *B*-field component must be continuous. This is guaranteed in the present problem by the fact that $B_z = \mu_0 H_z$ is everywhere equal to zero.

Problem 3)

a) $\nabla \cdot \mathbf{D} = \rho_{\text{free}} \rightarrow \varepsilon_0 \nabla \cdot \mathbf{E} = \rho_{\text{free}} - \nabla \cdot \mathbf{P}$. Conjugating both sides of the equation, we find $\varepsilon_0 \nabla \cdot \mathbf{E}^* = \rho_{\text{free}}^* - \nabla \cdot \mathbf{P}^*$, which indicates that the source distributions ρ_{free}^* and \mathbf{P}^* together give rise to the *E*-field distribution \mathbf{E}^* .

b) Upon adding Maxwell's 1st equation to its complex conjugate, one arrives at

$$\varepsilon_0 \nabla \cdot (\boldsymbol{E} + \boldsymbol{E}^*) = (\rho_{\text{free}} + \rho_{\text{free}}^*) - \nabla \cdot (\boldsymbol{P} + \boldsymbol{P}^*).$$

If we now divide both sides of the above equation by 2, we can conclude that the combined source distributions $\frac{1}{2}(\rho_{\text{free}} + \rho_{\text{free}}^*) = \text{Real}(\rho_{\text{free}}) = \rho'$ and $\frac{1}{2}(\boldsymbol{P} + \boldsymbol{P}^*) = \text{Real}(\boldsymbol{P}) = \boldsymbol{P}'$ give rise to the *E*-field distribution $\frac{1}{2}(\boldsymbol{E} + \boldsymbol{E}^*) = \text{Real}(\boldsymbol{E}) = \boldsymbol{E}'$.

c) Subtracting from Maxwell's 1st equation its complex conjugate, one arrives at

$$\varepsilon_0 \nabla \cdot (\boldsymbol{E} - \boldsymbol{E}^*) = (\rho_{\text{free}} - \rho_{\text{free}}^*) - \nabla \cdot (\boldsymbol{P} - \boldsymbol{P}^*).$$

If we now divide both sides of the above equation by 2i, we can conclude that the combined source distributions $(\rho_{\text{free}} - \rho_{\text{free}}^*)/2i = \text{Imag}(\rho_{\text{free}}) = \rho''$ and $(\mathbf{P} - \mathbf{P}^*)/2i = \text{Imag}(\mathbf{P}) = \mathbf{P}''$ give rise to the *E*-field distribution $(\mathbf{E} - \mathbf{E}^*)/2i = \text{Imag}(\mathbf{E}) = \mathbf{E}''$.

d) The same procedures as above, applied to all four of Maxwell's equations, reveal that, if the (complex-valued) sources ρ_{free} , J_{free} , P and M produce the fields E and H, then the source distributions ρ_{free}^* , J_{free}^* , P^* and M^* will produce the fields E^* and H^* . By the same token, the real parts ρ_{free}' , J_{free}' , P' and M' of the sources give rise to E' and H'. Similarly, the imaginary parts $\rho_{\text{free}}', J_{\text{free}}', P''$ and M'' of the sources produce the fields E'' and H''.