Problem 1)

$$
\begin{aligned}
\boldsymbol{E}(\boldsymbol{r}, t)= & \exp (\gamma t-\boldsymbol{\beta} \cdot \boldsymbol{r})\left[\boldsymbol{A} \cos \left(\boldsymbol{\alpha} \cdot \boldsymbol{r}-\omega_{0} t+\varphi_{A}\right)-\boldsymbol{B} \sin \left(\boldsymbol{\alpha} \cdot \boldsymbol{r}-\omega_{0} t+\varphi_{B}\right)\right] \\
= & \exp (\gamma t-\boldsymbol{\beta} \cdot \boldsymbol{r})\left\{\operatorname{Real}\left\{\boldsymbol{A} \exp \left[\mathrm{i}\left(\boldsymbol{\alpha} \cdot \boldsymbol{r}-\omega_{0} t+\varphi_{A}\right)\right]\right\}-\operatorname{Imag}\left\{\boldsymbol{B} \exp \left[\mathrm{i}\left(\boldsymbol{\alpha} \cdot \boldsymbol{r}-\omega_{0} t+\varphi_{B}\right)\right]\right\}\right\} \\
= & \exp (\gamma t-\boldsymbol{\beta} \cdot \boldsymbol{r}) \\
& \times\left\{\operatorname{Real}\left\{\boldsymbol{A} \exp \left(\mathrm{i} \varphi_{A}\right) \exp \left[\mathrm{i}\left(\boldsymbol{\alpha} \cdot \boldsymbol{r}-\omega_{0} t\right)\right]\right\}-\operatorname{Imag}\left\{\boldsymbol{B} \exp \left(\mathrm{i} \varphi_{B}\right) \exp \left[\mathrm{i}\left(\boldsymbol{\alpha} \cdot \boldsymbol{r}-\omega_{0} t\right)\right]\right\}\right\} \\
= & \exp (\gamma t-\boldsymbol{\beta} \cdot \boldsymbol{r}) \\
& \times\left\{\operatorname{Real}\left\{\boldsymbol{A} \exp \left(\mathrm{i} \varphi_{A}\right) \exp \left[\mathrm{i}\left(\boldsymbol{\alpha} \cdot \boldsymbol{r}-\omega_{0} t\right)\right]\right\}+\operatorname{Real}\left\{\mathrm{i} \boldsymbol{B} \exp \left(\mathrm{i} \varphi_{B}\right) \exp \left[\mathrm{i}\left(\boldsymbol{\alpha} \cdot \boldsymbol{r}-\omega_{0} t\right)\right]\right\}\right\} \\
= & \exp (\gamma t-\boldsymbol{\beta} \cdot \boldsymbol{r}) \operatorname{Real}\left\{\left[\boldsymbol{A} \exp \left(\mathrm{i} \varphi_{A}\right)+\mathrm{i} \boldsymbol{B} \exp \left(\mathrm{i} \varphi_{B}\right)\right] \exp \left[\mathrm{i}\left(\boldsymbol{\alpha} \cdot \boldsymbol{r}-\omega_{0} t\right)\right]\right\} \\
= & \operatorname{Real}\left\{\left[\boldsymbol{A} \exp \left(\mathrm{i} \varphi_{A}\right)+\mathrm{i} \boldsymbol{B} \exp \left(\mathrm{i} \varphi_{B}\right)\right] \exp \left\{\mathrm{i}\left[(\boldsymbol{\alpha}+\mathrm{i} \boldsymbol{\beta}) \cdot \boldsymbol{r}-\left(\omega_{0}+\mathrm{i} \gamma\right) t\right]\right\}\right\} .
\end{aligned}
$$

Comparison with the complex-valued E-field reveals that $\boldsymbol{k}=\boldsymbol{\alpha}+\mathrm{i} \boldsymbol{\beta}, \omega=\omega_{0}+\mathrm{i} \gamma$, and $\boldsymbol{E}_{0}=\boldsymbol{E}_{0}^{\prime}+\mathrm{i} \boldsymbol{E}_{0}^{\prime \prime}=\boldsymbol{A} \exp \left(\mathrm{i} \varphi_{A}\right)+\mathrm{i} \boldsymbol{B} \exp \left(\mathrm{i} \varphi_{B}\right)=\left(\boldsymbol{A} \cos \varphi_{A}-\boldsymbol{B} \sin \varphi_{B}\right)+\mathrm{i}\left(\boldsymbol{A} \sin \varphi_{A}+\boldsymbol{B} \cos \varphi_{B}\right)$. If need be, one may also solve the expressions of $\boldsymbol{E}_{0}^{\prime}$ and $\boldsymbol{E}_{0}^{\prime \prime}$ for arbitrary values of φ_{A} and φ_{B} to obtain

$$
\boldsymbol{A}=\frac{\left(\cos \varphi_{B}\right) \boldsymbol{E}_{0}^{\prime}+\left(\sin \varphi_{B}\right) \boldsymbol{E}_{0}^{\prime \prime}}{\cos \left(\varphi_{A}-\varphi_{B}\right)} ; \quad \boldsymbol{B}=\frac{-\left(\sin \varphi_{A}\right) \boldsymbol{E}_{0}^{\prime}+\left(\cos \varphi_{A}\right) \boldsymbol{E}_{0}^{\prime \prime}}{\cos \left(\varphi_{A}-\varphi_{B}\right)} .
$$

Problem 2)

a) $\boldsymbol{\nabla} \cdot \boldsymbol{B}=\frac{\partial\left(\rho B_{\rho}\right)}{\rho \partial \rho}+\frac{\partial B_{z}}{\partial z}$

$$
=B_{0}\left\{2\left(z / z_{0}^{2}\right)\left[1-\left(\rho / \rho_{0}\right)^{2}\right]+2\left(z / z_{0}^{2}\right)\left[\left(\rho / \rho_{0}\right)^{2}-1\right]\right\} \exp \left[-\left(\rho / \rho_{0}\right)^{2}-\left(z / z_{0}\right)^{2}\right]=0 .
$$

b) $\boldsymbol{J}_{\text {free }}(\boldsymbol{r})=\boldsymbol{\nabla} \times \boldsymbol{H}(\boldsymbol{r})=\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{B}(\boldsymbol{r})=\mu_{0}^{-1}\left(\frac{\partial B_{\rho}}{\partial z}-\frac{\partial B_{z}}{\partial \rho}\right) \widehat{\boldsymbol{\varphi}}$

$$
\begin{aligned}
= & \mu_{0}^{-1} B_{0}\left(\rho / \rho_{0}^{2}\right)\left\{\left(\rho_{0} / z_{0}\right)^{2}\left[1-2\left(z / z_{0}\right)^{2}\right]-2\left(\rho / \rho_{0}\right)^{2}+4\right\} \\
& \times \exp \left[-\left(\rho / \rho_{0}\right)^{2}-\left(z / z_{0}\right)^{2}\right] \hat{\boldsymbol{\varphi}} .
\end{aligned}
$$

c) As expected, $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text {free }}(\boldsymbol{r})=0$, which is consistent with the charge-current continuity equation for a static system where $\partial \rho_{\text {free }} / \partial t=0$. The divergence of $\boldsymbol{J}_{\text {free }}$ may, of course, be evaluated directly from the above expression. However, since $\boldsymbol{J}_{\text {free }}=\boldsymbol{\nabla} \times \boldsymbol{H}$ and the divergence of curl is always zero, we readily conclude that $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text {free }}=0$.

Problem 3)

a) $\boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r})=\frac{1}{r}\left[\frac{\partial\left(r E_{\theta}\right)}{\partial r}-\frac{\partial E_{r}}{\partial \theta}\right] \widehat{\boldsymbol{\varphi}}=\frac{E_{0}}{r}\left\{-r_{0} \cos \theta \frac{\partial \exp \left[-\left(r / r_{0}\right)^{2}\right]}{\partial r}-2\left(r / r_{0}\right) \exp \left[-\left(r / r_{0}\right)^{2}\right] \frac{\partial \sin \theta}{\partial \theta}\right\} \widehat{\boldsymbol{\varphi}}$

$$
=\left(E_{0} / r\right)\left[2\left(r / r_{0}\right) \cos \theta-2\left(r / r_{0}\right) \cos \theta\right] \exp \left[-\left(r / r_{0}\right)^{2}\right] \widehat{\boldsymbol{\varphi}}=0 .
$$

b)

$$
\rho_{\text {free }}(\boldsymbol{r})=\varepsilon_{0} \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r})=\varepsilon_{0}\left[\frac{\partial\left(r^{2} E_{r}\right)}{r^{2} \partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta E_{\theta}\right)}{\partial \theta}\right]
$$

$$
\begin{aligned}
& =\varepsilon_{0} E_{0}\left\{\frac{\partial}{r^{2} \partial r} 2\left(r^{3} / r_{0}\right) \exp \left[-\left(r / r_{0}\right)^{2}\right] \sin \theta-\frac{\left(r_{0} / r\right) \exp \left[-\left(r / r_{0}\right)^{2}\right]}{r \sin \theta} \frac{\partial(\sin \theta \cos \theta)}{\partial \theta}\right\} \\
& =\left(\varepsilon_{0} E_{0} / r_{0}\right)\left\{2\left[3-2\left(r / r_{0}\right)^{2}\right] \sin \theta-\frac{\left(r_{0} / r\right)^{2} \cos (2 \theta)}{\sin \theta}\right\} \exp \left[-\left(r / r_{0}\right)^{2}\right]
\end{aligned}
$$

c) $Q=\int_{r=0}^{\infty} \int_{\theta=0}^{\pi} 2 \pi r^{2} \sin \theta \rho_{\text {free }}(r, \theta) \mathrm{d} r \mathrm{~d} \theta$

$$
\begin{aligned}
& =2 \pi r_{0} \varepsilon_{0} E_{0} \int_{r=0}^{\infty} \int_{\theta=0}^{\pi}\left\{2\left(r / r_{0}\right)^{2}\left[3-2\left(r / r_{0}\right)^{2}\right] \sin ^{2} \theta-\cos (2 \theta)\right\} \exp \left[-\left(r / r_{0}\right)^{2}\right] \mathrm{d} r \mathrm{~d} \theta \\
& =2 \pi^{2} r_{0} \varepsilon_{0} E_{0} \int_{0}^{\infty}\left(r / r_{0}\right)^{2}\left[3-2\left(r / r_{0}\right)^{2}\right] \exp \left[-\left(r / r_{0}\right)^{2}\right] \mathrm{d} r \\
& =2 \pi^{2} r_{0}^{2} \varepsilon_{0} E_{0} \int_{0}^{\infty}\left(3 x^{2}-2 x^{4}\right) \exp \left(-x^{2}\right) \mathrm{d} x=2 \pi^{2} r_{0}^{2} \varepsilon_{0} E_{0}\left(\frac{3 \sqrt{\pi}}{4}-\frac{6 \sqrt{\pi}}{8}\right)=0
\end{aligned}
$$

The above result should be expected because, when $r \rightarrow \infty, \boldsymbol{E}(\boldsymbol{r}) \rightarrow 0$ in such a way that the integral of $\varepsilon_{0} \boldsymbol{E}(\boldsymbol{r})$ over the surface of an infinitely large sphere approaches zero. Consequently, in accordance with Maxwell's $1^{\text {st }}$ equation, the total charge Q inside the (infinitely large) sphere must vanish.

Problem 4)

a) In general, $\boldsymbol{D}=\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}$ and $\boldsymbol{B}=\mu_{0} \boldsymbol{H}+\boldsymbol{M}$. Maxwell's equations in differential form are written as follows:

$$
\begin{align*}
& \boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho_{\text {free }} \tag{1}\\
& \boldsymbol{\nabla} \times \boldsymbol{H}=\boldsymbol{J}_{\text {free }}+\partial \boldsymbol{D} / \partial t \tag{2}\\
& \boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t \tag{3}\\
& \boldsymbol{\nabla} \cdot \boldsymbol{B}=0 \tag{4}
\end{align*}
$$

b) Upon elimination of \boldsymbol{E} and \boldsymbol{H}, Eqs.(1) and (4) remain intact, whereas Eqs.(2) and (3) become

$$
\begin{gather*}
\boldsymbol{\nabla} \times \boldsymbol{B}=\mu_{0}\left(\boldsymbol{J}_{\text {free }}+\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}\right)+\mu_{0} \partial \boldsymbol{D} / \partial t \\
\boldsymbol{\nabla} \times \boldsymbol{D}=\varepsilon_{0}\left(\varepsilon_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{P}-\partial \boldsymbol{B} / \partial t\right)
\end{gather*}
$$

c) From Eqs.(1) and (4) we infer that, in the present formulation, the total electric charge-density is $\rho_{\text {total }}^{(e)}=\rho_{\text {free }}$, while the total magnetic charge-density is $\rho_{\text {total }}^{(m)}=0$. The total electric currentdensity is seen from Eq. $\left(2^{\prime}\right)$ to be $\boldsymbol{J}_{\text {total }}^{(e)}=\boldsymbol{J}_{\text {free }}+\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}$. Considering the charge-current continuity equation, $\boldsymbol{\nabla} \cdot \boldsymbol{J}+(\partial \rho / \partial t)=0$, and that, according to a well-known vector identity, $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \boldsymbol{M})=0$, it is seen that no electric charge-density is associated with $\boldsymbol{J}_{\text {bound }}^{(e)}=\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}$.

Similarly, according to Eq.(3'), the magnetic current-density is $\boldsymbol{J}_{\text {total }}^{(m)}=\boldsymbol{J}_{\text {bound }}^{(m)}=\varepsilon_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{P}$. As before, the charge-current continuity equation, $\boldsymbol{\nabla} \cdot \boldsymbol{J}+(\partial \rho / \partial t)=0$, in conjunction with the vector identity $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \boldsymbol{P})=0$ implies that $\rho_{\text {total }}^{(m)}=0$, in agreement with Eq.(4). Note that the units of $\varepsilon_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{P}$ are the same as those of $\partial \boldsymbol{B} / \partial t$, namely, weber $/\left(\mathrm{m}^{2} \cdot \mathrm{sec}\right)$, which is consistent with the designation of $\varepsilon_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{P}$ as the bound magnetic current-density $\boldsymbol{J}_{\text {bound }}^{(m)}$.
d) Upon dot-multiplying Eq.(2') by \boldsymbol{D} and Eq.(3') by \boldsymbol{B} we will have

$$
\begin{gather*}
\boldsymbol{D} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B})=\mu_{0} \boldsymbol{D} \cdot \boldsymbol{J}_{\text {free }}+\boldsymbol{D} \cdot(\boldsymbol{\nabla} \times \boldsymbol{M})+\mu_{0} \boldsymbol{D} \cdot(\partial \boldsymbol{D} / \partial t), \tag{5}\\
\boldsymbol{B} \cdot(\boldsymbol{\nabla} \times \boldsymbol{D})=\boldsymbol{B} \cdot(\boldsymbol{\nabla} \times \boldsymbol{P})-\varepsilon_{0} \boldsymbol{B} \cdot(\partial \boldsymbol{B} / \partial t) . \tag{6}
\end{gather*}
$$

Subtracting Eq.(6) from Eq.(5) and using the vector identity $\boldsymbol{D} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B})-\boldsymbol{B} \cdot(\boldsymbol{\nabla} \times \boldsymbol{D})=$ $\boldsymbol{\nabla} \cdot(\boldsymbol{B} \times \boldsymbol{D})$ now yields

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot(\boldsymbol{B} \times \boldsymbol{D})=\frac{\partial}{\partial t}\left(1 / 2 \mu_{0} \boldsymbol{D} \cdot \boldsymbol{D}+1 / 2 \varepsilon_{0} \boldsymbol{B} \cdot \boldsymbol{B}\right)+\mu_{0} \boldsymbol{D} \cdot \boldsymbol{J}_{\text {free }}+\boldsymbol{D} \cdot(\boldsymbol{\nabla} \times \boldsymbol{M})-\boldsymbol{B} \cdot(\boldsymbol{\nabla} \times \boldsymbol{P}) . \tag{7}
\end{equation*}
$$

We multiply both sides of the above equation by $c^{2}=1 /\left(\mu_{0} \varepsilon_{0}\right)$, then define the alternative Poynting vector $\boldsymbol{S}(\boldsymbol{r}, t)=c^{2} \boldsymbol{D}(\boldsymbol{r}, t) \times \boldsymbol{B}(\boldsymbol{r}, t)$, which has the units of $J o u l e /\left(m^{2} \cdot \mathrm{sec}\right)$, to arrive at

$$
\begin{align*}
\boldsymbol{\nabla} \cdot \boldsymbol{S} & +\frac{\partial}{\partial t}\left(1 / 2 \varepsilon_{0}^{-1} \boldsymbol{D} \cdot \boldsymbol{D}+1 / 2 \mu_{0}^{-1} \boldsymbol{B} \cdot \boldsymbol{B}\right) \\
& +\left(\boldsymbol{D} / \varepsilon_{0}\right) \cdot\left(\boldsymbol{J}_{\text {free }}+\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}\right)-\left(\boldsymbol{B} / \mu_{0}\right) \cdot\left(\varepsilon_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{P}\right)=0 . \tag{8}
\end{align*}
$$

It is thus seen in the proposed formulation that the D-field energy-density is $1 / 2 \varepsilon_{0}^{-1} \boldsymbol{D} \cdot \boldsymbol{D}$, while that of the B-field is $1 / 2 \mu_{0}^{-1} \boldsymbol{B} \cdot \boldsymbol{B}$. The D-field exchanges energy with the electric currentdensity $\boldsymbol{J}_{\text {total }}^{(e)}$ at the rate of $\left(\boldsymbol{D} / \varepsilon_{0}\right) \cdot \boldsymbol{J}_{\text {total }}^{(e)}$, whereas the B-field exchanges energy with the magnetic current-density $\boldsymbol{J}_{\text {total }}^{(m)}$ at the rate of $-\left(\boldsymbol{B} / \mu_{0}\right) \cdot \boldsymbol{J}_{\text {total }}^{(m)}$.

