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Opti 501 1st Midterm Solutions (9/28/2017) Time: 75 minutes 

Problem 1) 
 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = exp(𝛾𝛾𝛾𝛾 − 𝜷𝜷 ∙ 𝒓𝒓) [𝑨𝑨 cos(𝜶𝜶 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡 + 𝜑𝜑𝐴𝐴) −𝑩𝑩 sin(𝜶𝜶 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡 + 𝜑𝜑𝐵𝐵)]  

 = exp(𝛾𝛾𝛾𝛾 − 𝜷𝜷 ∙ 𝒓𝒓) �Real{𝑨𝑨 exp[i(𝜶𝜶 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡 + 𝜑𝜑𝐴𝐴)]} − Imag{𝑩𝑩 exp[i(𝜶𝜶 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡 + 𝜑𝜑𝐵𝐵)]}� 

 = exp(𝛾𝛾𝛾𝛾 − 𝜷𝜷 ∙ 𝒓𝒓) 

 × �Real{𝑨𝑨 exp(i𝜑𝜑𝐴𝐴) exp[i(𝜶𝜶 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)]} − Imag{𝑩𝑩 exp(i𝜑𝜑𝐵𝐵) exp[i(𝜶𝜶 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)]}� 

 = exp(𝛾𝛾𝛾𝛾 − 𝜷𝜷 ∙ 𝒓𝒓) 

 × �Real{𝑨𝑨 exp(i𝜑𝜑𝐴𝐴) exp[i(𝜶𝜶 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)]} + Real{i𝑩𝑩 exp(i𝜑𝜑𝐵𝐵) exp[i(𝜶𝜶 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)]}� 

 = exp(𝛾𝛾𝛾𝛾 − 𝜷𝜷 ∙ 𝒓𝒓) Real{[𝑨𝑨 exp(i𝜑𝜑𝐴𝐴) + i𝑩𝑩 exp(i𝜑𝜑𝐵𝐵)] exp[i(𝜶𝜶 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)]} 

 = Real{[𝑨𝑨 exp(i𝜑𝜑𝐴𝐴) + i𝑩𝑩 exp(i𝜑𝜑𝐵𝐵)] exp{i[(𝜶𝜶+ i𝜷𝜷) ∙ 𝒓𝒓 − (𝜔𝜔0 + i𝛾𝛾)𝑡𝑡]}}. 

Comparison with the complex-valued 𝐸𝐸-field reveals that 𝒌𝒌 = 𝜶𝜶 + i𝜷𝜷, 𝜔𝜔 = 𝜔𝜔0 + i𝛾𝛾, and 
𝑬𝑬0 = 𝑬𝑬0

′ + i𝑬𝑬0
″ = 𝑨𝑨 exp(i𝜑𝜑𝐴𝐴) + i𝑩𝑩 exp(i𝜑𝜑𝐵𝐵) = (𝑨𝑨 cos𝜑𝜑𝐴𝐴 − 𝑩𝑩 sin𝜑𝜑𝐵𝐵) + i(𝑨𝑨 sin𝜑𝜑𝐴𝐴 + 𝑩𝑩 cos𝜑𝜑𝐵𝐵). If need 

be, one may also solve the expressions of 𝑬𝑬0
′  and 𝑬𝑬0

″ for arbitrary values of 𝜑𝜑𝐴𝐴 and 𝜑𝜑𝐵𝐵 to obtain 

 𝑨𝑨 = (cos𝜑𝜑𝐵𝐵)𝑬𝑬0′  + (sin𝜑𝜑𝐵𝐵)𝑬𝑬0″

cos(𝜑𝜑𝐴𝐴 − 𝜑𝜑𝐵𝐵) ;              𝑩𝑩 = −(sin𝜑𝜑𝐴𝐴)𝑬𝑬0′  + (cos𝜑𝜑𝐴𝐴)𝑬𝑬0″

cos(𝜑𝜑𝐴𝐴 − 𝜑𝜑𝐵𝐵) . 
 
Problem 2) 

a) 𝜵𝜵 ∙ 𝑩𝑩 = 𝜕𝜕�𝜌𝜌𝐵𝐵𝜌𝜌�
𝜌𝜌𝜌𝜌𝜌𝜌

+ 𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕

 

 = 𝐵𝐵0{2(𝑧𝑧 𝑧𝑧02⁄ )[1 − (𝜌𝜌 𝜌𝜌0⁄ )2] + 2(𝑧𝑧 𝑧𝑧02⁄ )[(𝜌𝜌 𝜌𝜌0⁄ )2 − 1]} exp[−(𝜌𝜌 𝜌𝜌0⁄ )2 − (𝑧𝑧 𝑧𝑧0⁄ )2] = 0. 

b) 𝑱𝑱free(𝒓𝒓) = 𝜵𝜵 × 𝑯𝑯(𝒓𝒓) = 𝜇𝜇0−1𝜵𝜵 × 𝑩𝑩(𝒓𝒓) = 𝜇𝜇0−1 �
𝜕𝜕𝐵𝐵𝜌𝜌
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕
�𝝋𝝋�  

 = 𝜇𝜇0−1𝐵𝐵0(𝜌𝜌 𝜌𝜌02⁄ ){(𝜌𝜌0 𝑧𝑧0⁄ )2[1 − 2(𝑧𝑧 𝑧𝑧0⁄ )2]− 2(𝜌𝜌 𝜌𝜌0⁄ )2 + 4} 

 × exp[−(𝜌𝜌 𝜌𝜌0⁄ )2 − (𝑧𝑧 𝑧𝑧0⁄ )2]𝝋𝝋� . 

c) As expected, 𝜵𝜵 ∙ 𝑱𝑱free(𝒓𝒓) = 0, which is consistent with the charge-current continuity equation 
for a static system where 𝜕𝜕𝜌𝜌free 𝜕𝜕𝜕𝜕⁄ = 0. The divergence of 𝑱𝑱free may, of course, be evaluated 
directly from the above expression. However, since 𝑱𝑱free = 𝜵𝜵 × 𝑯𝑯 and the divergence of curl is 
always zero, we readily conclude that 𝜵𝜵 ∙ 𝑱𝑱free = 0. 
 
Problem 3) 

a) 𝜵𝜵 × 𝑬𝑬(𝒓𝒓) = 1
𝑟𝑟
�𝜕𝜕(𝑟𝑟𝐸𝐸𝜃𝜃)

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝐸𝐸𝑟𝑟

𝜕𝜕𝜕𝜕
�𝝋𝝋� = 𝐸𝐸0

𝑟𝑟
�−𝑟𝑟0 cos𝜃𝜃 𝜕𝜕 exp[−(𝑟𝑟 𝑟𝑟0⁄ )2]

𝜕𝜕𝜕𝜕
− 2(𝑟𝑟 𝑟𝑟0⁄ ) exp[−(𝑟𝑟 𝑟𝑟0⁄ )2] 𝜕𝜕 sin𝜃𝜃

𝜕𝜕𝜕𝜕
�𝝋𝝋�  

 = (𝐸𝐸0 𝑟𝑟⁄ )[2(𝑟𝑟 𝑟𝑟0⁄ ) cos𝜃𝜃 − 2(𝑟𝑟 𝑟𝑟0⁄ ) cos𝜃𝜃] exp[−(𝑟𝑟 𝑟𝑟0⁄ )2]𝝋𝝋� = 0. 

b) 𝜌𝜌free(𝒓𝒓) = 𝜀𝜀0𝜵𝜵 ∙ 𝑬𝑬(𝒓𝒓) = 𝜀𝜀0 �
𝜕𝜕�𝑟𝑟2𝐸𝐸𝑟𝑟�
𝑟𝑟2𝜕𝜕𝜕𝜕

+ 1
𝑟𝑟 sin𝜃𝜃

𝜕𝜕(sin𝜃𝜃𝐸𝐸𝜃𝜃)
𝜕𝜕𝜕𝜕

� 
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 = 𝜀𝜀0𝐸𝐸0 �
𝜕𝜕

𝑟𝑟2𝜕𝜕𝜕𝜕
2(𝑟𝑟3 𝑟𝑟0⁄ ) exp[−(𝑟𝑟 𝑟𝑟0⁄ )2] sin𝜃𝜃 − (𝑟𝑟0 𝑟𝑟⁄ )exp�−(𝑟𝑟 𝑟𝑟0⁄ )2�

𝑟𝑟 sin𝜃𝜃
𝜕𝜕(sin𝜃𝜃 cos𝜃𝜃)

𝜕𝜕𝜕𝜕
� 

 = (𝜀𝜀0𝐸𝐸0 𝑟𝑟0⁄ ) �2[3 − 2(𝑟𝑟 𝑟𝑟0⁄ )2] sin𝜃𝜃 − (𝑟𝑟0 𝑟𝑟⁄ )2 cos(2𝜃𝜃)
sin𝜃𝜃

� exp[−(𝑟𝑟 𝑟𝑟0⁄ )2]. 

c) 𝑄𝑄 = � ∫ 2𝜋𝜋𝑟𝑟2 sin𝜃𝜃 𝜌𝜌free(𝑟𝑟,𝜃𝜃)d𝑟𝑟d𝜃𝜃 𝜋𝜋
𝜃𝜃=0

∞

𝑟𝑟=0
 

 = 2𝜋𝜋𝑟𝑟0𝜀𝜀0𝐸𝐸0 � ∫ {2(𝑟𝑟 𝑟𝑟0⁄ )2[3 − 2(𝑟𝑟 𝑟𝑟0⁄ )2] sin2 𝜃𝜃 − cos(2𝜃𝜃)} exp[−(𝑟𝑟 𝑟𝑟0⁄ )2] d𝑟𝑟d𝜃𝜃𝜋𝜋
𝜃𝜃=0

∞

𝑟𝑟=0
 

 = 2𝜋𝜋2𝑟𝑟0𝜀𝜀0𝐸𝐸0 ∫ (𝑟𝑟 𝑟𝑟0⁄ )2[3 − 2(𝑟𝑟 𝑟𝑟0⁄ )2] exp[−(𝑟𝑟 𝑟𝑟0⁄ )2] d𝑟𝑟∞
0  

 = 2𝜋𝜋2𝑟𝑟02𝜀𝜀0𝐸𝐸0 ∫ (3𝑥𝑥2 − 2𝑥𝑥4) exp(−𝑥𝑥2) d𝑥𝑥∞
0 = 2𝜋𝜋2𝑟𝑟02𝜀𝜀0𝐸𝐸0 �

3√𝜋𝜋
4
− 6√𝜋𝜋

8
� = 0. 

The above result should be expected because, when 𝑟𝑟 → ∞, 𝑬𝑬(𝒓𝒓) → 0 in such a way that the 
integral of 𝜀𝜀0𝑬𝑬(𝒓𝒓) over the surface of an infinitely large sphere approaches zero. Consequently, 
in accordance with Maxwell’s 1st equation, the total charge 𝑄𝑄 inside the (infinitely large) sphere 
must vanish. 
 
Problem 4) 

a) In general, 𝑫𝑫 = 𝜀𝜀0𝑬𝑬 + 𝑷𝑷 and 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴. Maxwell’s equations in differential form are 
written as follows: 

 𝜵𝜵 ∙ 𝑫𝑫 = 𝜌𝜌free, (1) 

 𝜵𝜵 × 𝑯𝑯 = 𝑱𝑱free + 𝜕𝜕𝑫𝑫 𝜕𝜕𝜕𝜕⁄ , (2) 

 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝜕𝜕⁄ , (3) 

 𝜵𝜵 ∙ 𝑩𝑩 = 0. (4) 

b) Upon elimination of 𝑬𝑬 and 𝑯𝑯, Eqs.(1) and (4) remain intact, whereas Eqs.(2) and (3) become 

 𝜵𝜵 × 𝑩𝑩 = 𝜇𝜇0( 𝑱𝑱free + 𝜇𝜇0−1𝜵𝜵 × 𝑴𝑴) + 𝜇𝜇0 𝜕𝜕𝑫𝑫 𝜕𝜕𝜕𝜕⁄ , (2′) 

 𝜵𝜵 × 𝑫𝑫 = 𝜀𝜀0(𝜀𝜀0−1𝜵𝜵 × 𝑷𝑷 − 𝜕𝜕𝑩𝑩 𝜕𝜕𝑡𝑡⁄ ). (3′) 

c) From Eqs.(1) and (4) we infer that, in the present formulation, the total electric charge-density 
is 𝜌𝜌total

(𝑒𝑒) = 𝜌𝜌free, while the total magnetic charge-density is 𝜌𝜌total
(𝑚𝑚) = 0. The total electric current-

density is seen from Eq.(2′) to be 𝑱𝑱total
(𝑒𝑒) =  𝑱𝑱free + 𝜇𝜇0−1𝜵𝜵 × 𝑴𝑴. Considering the charge-current 

continuity equation, 𝜵𝜵 ∙ 𝑱𝑱 + (𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ) = 0, and that, according to a well-known vector identity, 
𝜵𝜵 ∙ (𝜵𝜵 × 𝑴𝑴) = 0, it is seen that no electric charge-density is associated with 𝑱𝑱bound

(𝑒𝑒) =  𝜇𝜇0−1𝜵𝜵× 𝑴𝑴. 
Similarly, according to Eq.(3′), the magnetic current-density is 𝑱𝑱total

(𝑚𝑚) = 𝑱𝑱bound
(𝑚𝑚) = 𝜀𝜀0−1𝜵𝜵 × 𝑷𝑷. 

As before, the charge-current continuity equation, 𝜵𝜵 ∙ 𝑱𝑱 + (𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ) = 0, in conjunction with the 
vector identity 𝜵𝜵 ∙ (𝜵𝜵 × 𝑷𝑷) = 0 implies that 𝜌𝜌total

(𝑚𝑚) = 0, in agreement with Eq.(4). Note that the 
units of 𝜀𝜀0−1𝜵𝜵 × 𝑷𝑷 are the same as those of 𝜕𝜕𝑩𝑩 𝜕𝜕𝜕𝜕⁄ , namely, weber (m2 ∙ sec)⁄ , which is consistent 
with the designation of 𝜀𝜀0−1𝜵𝜵 × 𝑷𝑷 as the bound magnetic current-density 𝑱𝑱bound

(𝑚𝑚) . 

d) Upon dot-multiplying Eq.(2′) by 𝑫𝑫 and Eq.(3′) by 𝑩𝑩 we will have 
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 𝑫𝑫 ∙ (𝜵𝜵 × 𝑩𝑩) = 𝜇𝜇0𝑫𝑫 ∙  𝑱𝑱free + 𝑫𝑫 ∙ (𝜵𝜵 × 𝑴𝑴) + 𝜇𝜇0𝑫𝑫 ∙ (𝜕𝜕𝑫𝑫 𝜕𝜕𝜕𝜕⁄ ), (5) 

 𝑩𝑩 ∙ (𝜵𝜵 × 𝑫𝑫) = 𝑩𝑩 ∙ (𝜵𝜵 × 𝑷𝑷) − 𝜀𝜀0𝑩𝑩 ∙ (𝜕𝜕𝑩𝑩 𝜕𝜕𝜕𝜕⁄ ). (6) 

Subtracting Eq.(6) from Eq.(5) and using the vector identity 𝑫𝑫 ∙ (𝜵𝜵 × 𝑩𝑩) − 𝑩𝑩 ∙ (𝜵𝜵 × 𝑫𝑫) =
𝜵𝜵 ∙ (𝑩𝑩 × 𝑫𝑫) now yields 

 𝜵𝜵 ∙ (𝑩𝑩 × 𝑫𝑫) = 𝜕𝜕
𝜕𝜕𝜕𝜕

(½𝜇𝜇0𝑫𝑫 ∙ 𝑫𝑫 + ½𝜀𝜀0𝑩𝑩 ∙ 𝑩𝑩) + 𝜇𝜇0𝑫𝑫 ∙ 𝑱𝑱free + 𝑫𝑫 ∙ ( 𝜵𝜵 × 𝑴𝑴) − 𝑩𝑩 ∙ (𝜵𝜵 × 𝑷𝑷). (7) 

We multiply both sides of the above equation by 𝑐𝑐2 = 1 (𝜇𝜇0𝜀𝜀0)⁄ , then define the alternative 
Poynting vector 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = 𝑐𝑐2𝑫𝑫(𝒓𝒓, 𝑡𝑡) × 𝑩𝑩(𝒓𝒓, 𝑡𝑡), which has the units of 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 (𝑚𝑚2 ∙ sec)⁄ , to arrive at 

 𝜵𝜵 ∙ 𝑺𝑺 + 𝜕𝜕
𝜕𝜕𝜕𝜕

(½𝜀𝜀0−1𝑫𝑫 ∙ 𝑫𝑫 + ½𝜇𝜇0−1𝑩𝑩 ∙ 𝑩𝑩) 

 +(𝑫𝑫 𝜀𝜀0⁄ ) ∙ (𝑱𝑱free + 𝜇𝜇0−1𝜵𝜵 × 𝑴𝑴) − (𝑩𝑩 𝜇𝜇0⁄ ) ∙ (𝜀𝜀0−1𝜵𝜵 × 𝑷𝑷) = 0. (8) 

It is thus seen in the proposed formulation that the 𝐷𝐷-field energy-density is ½𝜀𝜀0−1𝑫𝑫 ∙ 𝑫𝑫, 
while that of the 𝐵𝐵-field is ½𝜇𝜇0−1𝑩𝑩 ∙ 𝑩𝑩. The 𝐷𝐷-field exchanges energy with the electric current-
density 𝑱𝑱total

(𝑒𝑒)  at the rate of (𝑫𝑫 𝜀𝜀0⁄ ) ∙ 𝑱𝑱total
(𝑒𝑒) , whereas the 𝐵𝐵-field exchanges energy with the 

magnetic current-density 𝑱𝑱total
(𝑚𝑚)  at the rate of −(𝑩𝑩 𝜇𝜇0⁄ ) ∙ 𝑱𝑱total

(𝑚𝑚) . 
 


