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Opti 501 1st Midterm Solutions (10/6/2016) Time: 75 minutes 

Solution to Problem 1) a) Using Gauss’ law in conjunction with spherical surfaces of radius 𝜌𝜌, 
we find, since the 𝐸𝐸-field inside the metallic shell of the inner sphere must vanish, that the total 
charge on the interior surface of the inner sphere must be zero. Therefore, 𝜎𝜎12 = 0. The charge 
content of the inner sphere is thus distributed entirely on its outer surface, namely, 𝜎𝜎11 = 𝜎𝜎1. 

As for the outer sphere, we place the Gaussian surface inside its metallic shell. Since the 𝐸𝐸-
field inside the metal must be zero, the total charge inside the Gaussian sphere must vanish, that 
is, 4𝜋𝜋𝑅𝑅12𝜎𝜎1 + 4𝜋𝜋𝑅𝑅22𝜎𝜎22 = 0. This yields 𝜎𝜎22 = −(𝑅𝑅1 𝑅𝑅2⁄ )2𝜎𝜎1. The remaining charge will then 
appear on the outer surface of the outer sphere, that is, 𝜎𝜎21 = 𝜎𝜎2 − 𝜎𝜎22. 

b) Inside the small sphere the 𝐸𝐸-field is zero. The total charge on the inner shell is 𝑄𝑄 = 4𝜋𝜋𝑅𝑅12𝜎𝜎1. 
Therefore, in the region between the two spheres, 

 𝑬𝑬1(𝜌𝜌) = (𝑄𝑄 4𝜋𝜋𝜀𝜀o𝜌𝜌2⁄ )𝝆𝝆� = (𝜎𝜎1 𝜀𝜀o)⁄ (𝑅𝑅1 𝜌𝜌⁄ )2𝝆𝝆�;             𝑅𝑅1 < 𝜌𝜌 < 𝑅𝑅2. 

Outside the large sphere, the fields of the two spheres are superimposed, that is, 

 𝑬𝑬2(𝜌𝜌) = [(𝜎𝜎1 𝜀𝜀o)⁄ (𝑅𝑅1 𝜌𝜌⁄ )2 + (𝜎𝜎2 𝜀𝜀o)⁄ (𝑅𝑅2 𝜌𝜌⁄ )2]𝝆𝝆�;                𝜌𝜌 > 𝑅𝑅2. 

c) The potential difference (i.e., voltage) between the spheres is given by the integral of 𝑬𝑬1(𝜌𝜌) 
along the radial direction from 𝑅𝑅1 to 𝑅𝑅2, that is, 

 𝑉𝑉12 = � 𝐸𝐸1𝜌𝜌(𝜌𝜌)d𝜌𝜌
𝑅𝑅2
𝑅𝑅1

= ∫ (𝜎𝜎1 𝜀𝜀o)⁄ (𝑅𝑅1 𝜌𝜌⁄ )2d𝜌𝜌𝑅𝑅2
𝑅𝑅1

= −(𝜎𝜎1𝑅𝑅12 𝜀𝜀o)⁄ [(1 𝑅𝑅2⁄ ) − (1 𝑅𝑅1⁄ )] 

 = (𝜎𝜎1 𝜀𝜀o⁄ )(𝑅𝑅1 𝑅𝑅2⁄ )(𝑅𝑅2 − 𝑅𝑅1). 

Therefore, 
 𝐶𝐶 = 𝑄𝑄 𝑉𝑉⁄ = 4𝜋𝜋𝑅𝑅12𝜎𝜎1

(𝜎𝜎1 𝜀𝜀o⁄ )(𝑅𝑅1 𝑅𝑅2⁄ )(𝑅𝑅2−𝑅𝑅1) = 4𝜋𝜋𝜀𝜀o𝑅𝑅1𝑅𝑅2 (𝑅𝑅2 − 𝑅𝑅1)⁄ . 
 
Solution to Problem 2) a) The surface-current-density 𝑱𝑱𝑠𝑠 is the product of ordinary current-
density 𝑱𝑱free and the very small thickness 𝜏𝜏 of the cylindrical shell, that is, 𝑱𝑱𝑠𝑠 = 𝑱𝑱free𝜏𝜏. 
Considering that the units of 𝑱𝑱free are ampere/m2, we conclude that 𝑱𝑱𝑠𝑠 has units of ampere/m. 

b) In a cylindrical coordinate system the 𝐻𝐻-field has three components, namely 𝐻𝐻𝜌𝜌, 𝐻𝐻𝜑𝜑, and 𝐻𝐻𝑧𝑧. 
Due to the symmetry of the setup, these field components must be independent of the 𝜑𝜑 and 𝑧𝑧 
coordinates. This is because the current-carrying cylinder would look exactly the same if the 𝜌𝜌 
and 𝑧𝑧 coordinates of the observation point were fixed while its 𝜑𝜑 coordinate varied. Similarly, 
the system would look the same if the 𝜌𝜌 and 𝜑𝜑 coordinates of the observation point were fixed 
while its 𝑧𝑧 coordinate varied. The 𝐻𝐻-field components, therefore, can only be functions of the 𝜌𝜌 
coordinate. 

c) In conjunction with Maxwell’s 4th equation, 𝜵𝜵 ∙ 𝑩𝑩 = 0, we use a cylindrical volume of radius 
𝜌𝜌 and length 𝐿𝐿, centered on the 𝑧𝑧-axis, to show that 𝐻𝐻𝜌𝜌(𝜌𝜌) = 0. Clearly, 𝐻𝐻𝜑𝜑(𝜌𝜌) does not 
contribute to the surface integral of 𝑩𝑩 = 𝜇𝜇o𝑯𝑯 over the cylinder. Also, contributions from 𝐻𝐻𝑧𝑧(𝜌𝜌) 
to the top and bottom facets of the cylinder cancel each other out. The contribution of 𝐻𝐻𝜌𝜌(𝜌𝜌) to 
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the surface integral is 2𝜋𝜋𝜌𝜌𝐿𝐿𝐻𝐻𝜌𝜌(𝜌𝜌), but the overall surface integral must be zero and, therefore, 
𝐻𝐻𝜌𝜌(𝜌𝜌) = 0. 

Next, we use a circular loop of radius 𝜌𝜌 in the 𝑥𝑥𝑥𝑥-plane in conjunction with Maxwell’s 2nd 
equation, 𝜵𝜵 × 𝑯𝑯 = 𝑱𝑱free, to demonstrate that 𝐻𝐻𝜑𝜑(𝜌𝜌) = 0. The line integral of 𝐻𝐻𝜑𝜑 around the loop 
is 2𝜋𝜋𝜌𝜌𝐻𝐻𝜑𝜑(𝜌𝜌). However, no current crosses the loop and, therefore, 𝐻𝐻𝜑𝜑(𝜌𝜌) = 0. 

Finally, we use rectangular loops in the 𝜌𝜌𝑧𝑧-plane, again in conjunction with Maxwell’s 2nd 
equation, to obtain information about 𝐻𝐻𝑧𝑧(𝜌𝜌). If the rectangular loop is placed entirely outside the 
cylinder we find that no current crosses the loop and that, therefore, 𝐻𝐻𝑧𝑧 outside the cylinder is 
uniform. Similarly, placing the rectangular loop inside the cylinder shows that 𝐻𝐻𝑧𝑧 inside the 
cylinder is uniform as well. However, if the 𝐿𝐿 × 𝑊𝑊 rectangle has one leg inside and the opposite 
leg outside the cylinder, the integral of 𝐻𝐻𝑧𝑧 around the loop will be [𝐻𝐻𝑧𝑧

(inside) − 𝐻𝐻𝑧𝑧
(outside)]𝐿𝐿, 

while the current that crosses the loop will be 𝐽𝐽𝑠𝑠0𝐿𝐿. Consequently, 𝐻𝐻𝑧𝑧
(inside) − 𝐻𝐻𝑧𝑧

(outside) = 𝐽𝐽𝑠𝑠0. 
Given that a uniform 𝐻𝐻𝑧𝑧 field residing in the entire space cannot, in any way, be related via 

Maxwell’s equations to the solenoidal current 𝐽𝐽𝑠𝑠0𝝋𝝋� , we conclude that 𝐻𝐻𝑧𝑧
(outside) = 0. Therefore, 

 𝑯𝑯(𝜌𝜌,𝜑𝜑, 𝑧𝑧) = �
𝐽𝐽𝑠𝑠0𝒛𝒛�;     0 ≤ 𝜌𝜌 < 𝑅𝑅,

0;                   𝜌𝜌 > 𝑅𝑅.
 

 
Solution to Problem 3) They are all correct. Alice writes Maxwell’s equations as follows: 

 𝜀𝜀o𝜵𝜵 ∙ 𝑬𝑬 = 𝜌𝜌free − 𝜵𝜵 ∙ 𝑷𝑷 

 𝜵𝜵 × 𝑩𝑩 = 𝜇𝜇o (𝑱𝑱free + 𝜕𝜕𝑷𝑷 𝜕𝜕𝜕𝜕⁄ + 𝜇𝜇o−1𝜵𝜵 × 𝑴𝑴) + 𝜇𝜇o𝜀𝜀o 𝜕𝜕𝑬𝑬 𝜕𝜕𝜕𝜕⁄  

 𝜵𝜵 × 𝑬𝑬 = −  𝜕𝜕𝑩𝑩 𝜕𝜕𝜕𝜕⁄  

 𝜵𝜵 ∙ 𝑩𝑩 = 0 

In her approach, polarization produces electric charges and currents, while magnetization 
produces electric currents only. Alice then bundles all charge densities together, and all current 
densities together, and proceeds to use her equations to compute the resulting 𝑬𝑬 and 𝑩𝑩 fields. 

In contrast, Brian writes Maxwell’s equations as follows: 

 𝜵𝜵 ∙ 𝑫𝑫 = 𝜌𝜌free 

 𝜵𝜵 × 𝑯𝑯 =  𝑱𝑱free + 𝜕𝜕𝑫𝑫 𝜕𝜕𝜕𝜕⁄  

 𝜵𝜵 × 𝑫𝑫 = −𝜀𝜀o(𝜕𝜕𝑴𝑴 𝜕𝜕𝜕𝜕⁄ − 𝜀𝜀o−1𝜵𝜵 × 𝑷𝑷) − 𝜇𝜇o𝜀𝜀o𝜕𝜕𝑯𝑯 𝜕𝜕𝜕𝜕⁄  

 𝜇𝜇o𝜵𝜵 ∙ 𝑯𝑯 = −𝜵𝜵 ∙ 𝑴𝑴 

In this approach, magnetization produces magnetic charges and currents, while polarization 
produces magnetic currents only. Brian then bundles the two magnetic current-densities together, 
while treating electric and magnetic charge-densities separately. He proceeds to use his equations 
to compute the resulting 𝑫𝑫 and 𝑯𝑯 fields. 

Carol writes Maxwell’s equations as follows: 

 𝜀𝜀o𝜵𝜵 ∙ 𝑬𝑬 = 𝜌𝜌free − 𝜵𝜵 ∙ 𝑷𝑷 
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 𝜵𝜵 × 𝑯𝑯 =  (𝑱𝑱free + 𝜕𝜕𝑷𝑷 𝜕𝜕𝜕𝜕⁄ ) + 𝜀𝜀o 𝜕𝜕𝑬𝑬 𝜕𝜕𝜕𝜕⁄  

 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑴𝑴 𝜕𝜕𝜕𝜕⁄ − 𝜇𝜇o𝜕𝜕𝑯𝑯 𝜕𝜕𝜕𝜕⁄  

 𝜇𝜇o𝜵𝜵 ∙ 𝑯𝑯 = −𝜵𝜵 ∙ 𝑴𝑴 

In her approach, polarization produces electric charges and currents, while magnetization 
produces magnetic charges and currents. Carol treats the two types of charge-density separately, 
and also the two types of current-density separately. She then proceeds to use her version of 
Maxwell’s equations to compute the resulting 𝑬𝑬 and 𝑯𝑯 fields. 

David writes Maxwell’s equations as follows: 

 𝜵𝜵 ∙ 𝑫𝑫 = 𝜌𝜌free, 

 𝜵𝜵 × 𝑩𝑩 = 𝜇𝜇o (𝑱𝑱free + 𝜇𝜇o−1𝜵𝜵 × 𝑴𝑴) + 𝜇𝜇o 𝜕𝜕𝑫𝑫 𝜕𝜕𝜕𝜕⁄ , 

 𝜵𝜵 × 𝑫𝑫 = −𝜀𝜀o(−𝜀𝜀o−1𝜵𝜵 × 𝑷𝑷) − 𝜀𝜀o𝜕𝜕𝑩𝑩 𝜕𝜕𝜕𝜕⁄ , 

 𝜵𝜵 ∙ 𝑩𝑩 = 0. 

In David’s approach, polarization produces magnetic currents, while magnetization produces 
electric currents. David then treats the two types of current-density separately, and proceeds to 
use his version of Maxwell’s equations to compute the resulting 𝑫𝑫 and 𝑩𝑩 fields. 
 
Solution to Problem 4) a) For a relativistic treatment of the problem, define 𝛽𝛽0,1 = 𝑉𝑉0,1 𝑐𝑐⁄  and 
𝛾𝛾0,1 = 1 �1 − (𝑉𝑉0,1 𝑐𝑐⁄ )2⁄ . The conservation laws of energy and linear momentum may then be 
written as follows: 
 ℰ0 + 𝛾𝛾0𝑀𝑀𝑐𝑐2 = ℰ1 + 𝛾𝛾1𝑀𝑀𝑐𝑐2, (1a) 

 (ℰ0 𝑐𝑐⁄ ) + 𝛾𝛾0𝑀𝑀𝑉𝑉0 = −(ℰ1 𝑐𝑐⁄ ) + 𝛾𝛾1𝑀𝑀𝑉𝑉1. (1b) 

Note that ℰ0 and 𝑀𝑀 can have arbitrary (positive) values, and that 𝑉𝑉0 may be positive, zero, or 
negative, provided that |𝑉𝑉0| < 𝑐𝑐. Defining 𝛼𝛼0,1 = ℰ0,1 𝑀𝑀𝑐𝑐2⁄ , the above equations can be written 
in somewhat simplified form as 

 𝛼𝛼0 + 𝛾𝛾0 = 𝛼𝛼1 + 𝛾𝛾1, (2a) 

 𝛼𝛼0 + 𝛾𝛾0𝛽𝛽0 = −𝛼𝛼1 + 𝛾𝛾1𝛽𝛽1. (2b) 

b) In the non-relativistic approximation, we have 

 ℰ0 + ½𝑀𝑀𝑉𝑉02  = ℰ1 + ½𝑀𝑀𝑉𝑉12, (3a) 

 (ℰ0 𝑐𝑐⁄ ) + 𝑀𝑀𝑉𝑉0 = −(ℰ1 𝑐𝑐⁄ ) + 𝑀𝑀𝑉𝑉1. (3b) 
After normalization, Eqs.(3a) and (3b) become 

 𝛼𝛼0 + ½𝛽𝛽02  = 𝛼𝛼1 + ½𝛽𝛽12, (4a) 

 𝛼𝛼0 + 𝛽𝛽0 = −𝛼𝛼1 + 𝛽𝛽1. (4b) 
c) Adding Eq.(4a) to Eq.(4b) and rearranging the terms, we find 

 𝛽𝛽12 + 2𝛽𝛽1 − (4𝛼𝛼0 + 2𝛽𝛽0 + 𝛽𝛽02) = 0. (5) 
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Considering that |𝛽𝛽1| = |𝑉𝑉1| 𝑐𝑐⁄  must be less than 1.0, only one of the two solutions of the 
above quadratic equation in 𝛽𝛽1 will be acceptable, that is, 

 𝛽𝛽1 = �1 + 4𝛼𝛼0 + 2𝛽𝛽0 + 𝛽𝛽02 − 1. (6) 

Substitution into Eq.(4b) then yields 

 ℰ1 = 𝑀𝑀𝑐𝑐2(𝛽𝛽1 − 𝛽𝛽0) − ℰ0. (7) 

d) Given that, in the non-relativistic regime, 𝛼𝛼0 ≪ 1, 𝛽𝛽0 ≪ 1, and 𝛽𝛽1 ≪ 1, we can approximate 
𝛽𝛽1 of Eq.(6) by invoking the Taylor series expansion √1 + 𝜀𝜀 = 1 + ½𝜀𝜀 −⅛𝜀𝜀2 + ⋯, as follows: 

 𝛽𝛽1 = (2𝛼𝛼0 + 𝛽𝛽0 + ½𝛽𝛽02) −⅛(4𝛼𝛼0 + 2𝛽𝛽0 + 𝛽𝛽02)2 + ⋯ 

 = 2𝛼𝛼0 + 𝛽𝛽0 − 2𝛼𝛼02 − 2𝛼𝛼0𝛽𝛽0 − (𝛼𝛼0 + ½𝛽𝛽0 + ⅛𝛽𝛽02)𝛽𝛽02 + ⋯ 

 ≅ 𝛽𝛽0 + 2𝛼𝛼0(1 − 𝛼𝛼0 − 𝛽𝛽0). (8) 

Thus, to a good approximation, Eq.(8) provides an expression for the final velocity 𝑉𝑉1 of the 
mirror in terms of its initial velocity 𝑉𝑉0, the energy ℰ0 of the light bullet, and the mass 𝑀𝑀 of the 
mirror. Substitution from Eq.(8) into Eq.(7) yields the final energy of the light pulse, as follows: 

 ℰ1 ≅ 2ℰ0(1 − 𝛼𝛼0 − 𝛽𝛽0) − ℰ0         →         ℰ1 ℰ0⁄ ≅ 1 − 2(ℰ0 𝑀𝑀𝑐𝑐2⁄ ) − 2(𝑉𝑉0 𝑐𝑐⁄ ). (9) 

In the quantum picture of light, the incident pulse contains 𝑁𝑁 photons of (angular) frequency 
𝜔𝜔0 and energy ℏ𝜔𝜔0, so that ℰ0 = 𝑁𝑁ℏ𝜔𝜔0. Upon encountering the mirror, all 𝑁𝑁 photons are 
reflected, with their frequencies Doppler-shifted to 𝜔𝜔1, so that ℰ1 = 𝑁𝑁ℏ𝜔𝜔1. Thus, the Doppler 
shift of the optical frequency upon perfect reflection from a moving (or stationary) mirror fully 
accounts for the change of the pulse energy from ℰ0 to ℰ1. If the term 2ℰ0 (𝑀𝑀𝑐𝑐2)⁄  in Eq.(9) 
happens to be negligible, then the Doppler shift will be ∆𝜔𝜔 = 𝜔𝜔1 − 𝜔𝜔0 ≅ −2(𝑉𝑉0 𝑐𝑐⁄ )𝜔𝜔0. Note 
that 𝑉𝑉0 could be positive or negative, and that, therefore, the Doppler shift could decrease or 
increase the frequency of the light pulse upon reflection. For a stationary mirror (i.e., 𝑉𝑉0 = 0), 
the kinetic energy acquired by the mirror after reflection of the light pulse will be 2ℰ02 (𝑀𝑀𝑐𝑐2)⁄ . 
The more massive the stationary mirror, the smaller will be the fraction of the energy of the pulse 
that is converted to the mirror’s kinetic energy. Also, the greater the energy of the incident light 
pulse, the greater will be the fraction of its energy converted to the kinetic energy of the mirror. 
 
Digression: In the relativistic treatment of part (a), adding Eq.(2a) to Eq.(2b) yields 

 2𝛼𝛼0 + 𝛾𝛾0(1 + 𝛽𝛽0) = 𝛾𝛾1(1 + 𝛽𝛽1) = �(1 + 𝛽𝛽1) (1 − 𝛽𝛽1)⁄ . (10) 

The above equation may now be solved to yield 𝛽𝛽1, as follows: 

 1+𝛽𝛽1
1−𝛽𝛽1

= [2𝛼𝛼0 + 𝛾𝛾0(1 + 𝛽𝛽0)]2         →           𝛽𝛽1 = [2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2−1
[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1

 · (11) 

Having found 𝛽𝛽1, we can now derive an expression for 𝛾𝛾1, namely, 

 1 − 𝛽𝛽12 = �[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1�2− �[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2−1�2

{[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1}2     →     �1 − 𝛽𝛽12 = 2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]
[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1

 

    →        𝛾𝛾1 = 1 �1 − 𝛽𝛽12⁄ = [2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1
2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]  · (12) 

ignore high-order terms 
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Substitution for 𝛾𝛾1 into Eq.(2a) now yields a solution for 𝛼𝛼1, as follows: 

 𝛼𝛼1 = 𝛼𝛼0 + 𝛾𝛾0 − 𝛾𝛾1 = 𝛼𝛼0 + 𝛾𝛾0 −
[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1
2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)] = 𝛼𝛼0 + 2𝛾𝛾0[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]−[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2−1

2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]  

 = 𝛼𝛼0 + 4𝛼𝛼0𝛾𝛾0+2𝛾𝛾02(1+𝛽𝛽0)−4𝛼𝛼02−𝛾𝛾02(1+𝛽𝛽0)2−4𝛼𝛼0𝛾𝛾0(1+𝛽𝛽0)−1
2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)] = 𝛼𝛼0 + −4𝛼𝛼02−4𝛼𝛼0𝛽𝛽0𝛾𝛾0+𝛾𝛾02(1+𝛽𝛽0)(1−𝛽𝛽0)−1

2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]  

 = 𝛼𝛼0 −
2𝛼𝛼02+2𝛼𝛼0𝛽𝛽0𝛾𝛾0
2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0) = 𝛼𝛼0𝛾𝛾0(1−𝛽𝛽0)

2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0) = 𝛼𝛼0(1−𝛽𝛽0) (1+𝛽𝛽0)⁄
1+2𝛼𝛼0�(1−𝛽𝛽0) (1+𝛽𝛽0)⁄

· (13) 

Consequently, 

 ℰ1
ℰ0

= (1−𝛽𝛽0) (1+𝛽𝛽0)⁄
1+2(ℰ0 𝑀𝑀𝑐𝑐2⁄ )�(1−𝛽𝛽0) (1+𝛽𝛽0)⁄

· (14) 

If the mirror happens to be massive, ℰ0 𝑀𝑀𝑐𝑐2⁄ → 0, in which case the above equation yields 
the standard Doppler-shift formula for the ratio of the reflected to incident energies (or 
frequencies). If the initial mirror velocity happens to be zero, then ℰ1 = ℰ0 [1 + 2(ℰ0 𝑀𝑀𝑐𝑐2⁄ )]⁄  
reveals the loss of optical energy upon reflection from a mirror with a finite mass. 
 


