Problem 1)

a) In free space, Maxwell's first equation is $\boldsymbol{\nabla} \cdot\left(\varepsilon_{0} \boldsymbol{E}\right)=0$. Application to the E-field of the plane-wave yields $\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=0$. Consequently, $\boldsymbol{k} \cdot \boldsymbol{E}_{0}=0$. This is the general relation between the k-vector and the magnitude \boldsymbol{E}_{0} of the plane-wave's E-field.
b) In free space, Maxwell's fourth equation is $\boldsymbol{\nabla} \cdot\left(\mu_{0} \boldsymbol{H}\right)=0$. Application to the H-field of the plane-wave yields $\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=0$. Consequently, $\boldsymbol{k} \cdot \boldsymbol{H}_{0}=0$. This is the general relation between the k-vector and the magnitude \boldsymbol{H}_{0} of the plane-wave's E-field.
c) Maxwell's second equation in free space is $\boldsymbol{\nabla} \times \boldsymbol{H}=\varepsilon_{0} \partial \boldsymbol{E} / \partial t$. Substitution for \boldsymbol{E} and \boldsymbol{H} from the plane-wave expressions yields

$$
\mathrm{i} \boldsymbol{k} \times \boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=-\mathrm{i} \omega \varepsilon_{0} \boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \quad \rightarrow \quad \boldsymbol{k} \times \boldsymbol{H}_{0}=-\varepsilon_{0} \omega \boldsymbol{E}_{0} .
$$

d) Maxwell's third equation in free space is $\boldsymbol{\nabla} \times \boldsymbol{E}=-\mu_{0} \partial \boldsymbol{H} / \partial t$. Substitution for \boldsymbol{E} and \boldsymbol{H} from the plane-wave expressions yields

$$
\mathrm{i} \boldsymbol{k} \times \boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=\mathrm{i} \omega \mu_{0} \boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \quad \rightarrow \quad \boldsymbol{k} \times \boldsymbol{E}_{0}=\mu_{0} \omega \boldsymbol{H}_{0} .
$$

e) From part (c) we know that $\boldsymbol{E}_{0}=-\boldsymbol{k} \times \boldsymbol{H}_{0} /\left(\varepsilon_{0} \omega\right)$. Substitution in the result obtained in part (d) then yields

$$
-\boldsymbol{k} \times\left(\boldsymbol{k} \times \boldsymbol{H}_{0}\right) /\left(\varepsilon_{0} \omega\right)=\mu_{0} \omega \boldsymbol{H}_{0} \quad \rightarrow \quad\left(\boldsymbol{k} \cdot \boldsymbol{H}_{0}\right) \boldsymbol{k}-(\boldsymbol{k} \cdot \boldsymbol{k}) \boldsymbol{H}_{0}=-\mu_{0} \varepsilon_{0} \omega^{2} \boldsymbol{H}_{0} .
$$

Now, in part (b) we found that $\boldsymbol{k} \cdot \boldsymbol{H}_{0}=0$. Therefore, the first term on the left-hand side of the preceding equation disappears, and we are left with $(\boldsymbol{k} \cdot \boldsymbol{k}) \boldsymbol{H}_{0}=\mu_{0} \varepsilon_{0} \omega^{2} \boldsymbol{H}_{0}$. Dropping \boldsymbol{H}_{0} from both sides of this equation yields

$$
\boldsymbol{k} \cdot \boldsymbol{k}=\left(\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}\right) \cdot\left(\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}\right)=\left({k^{\prime 2}}^{2}-{k^{\prime \prime 2}}^{2}\right)+2 \mathrm{i} \boldsymbol{k}^{\prime} \cdot \boldsymbol{k}^{\prime \prime}=\mu_{0} \varepsilon_{0} \omega^{2}=(\omega / c)^{2}
$$

This is the general relation between the wave-vector \boldsymbol{k} and the frequency ω of a plane-wave in free space.

Problem 2)

a) Symmetry dictates that the E-field be radial and independent of the azimuthal and vertical coordinates φ and z, that is, $\boldsymbol{E}(r, \varphi, z)=E_{r}(r) \hat{\boldsymbol{r}}$. Now, imagine a cylindrical surface of radius r and height h centered on the z-axis, as shown in figure (a) below. Application to this cylinder of the integral form of Maxwell's first equation $\oint_{\text {surface }} \varepsilon_{0} \boldsymbol{E} \cdot d \boldsymbol{s}=\int_{\text {volume }} \rho_{\text {free }} d v$ yields

$$
2 \pi r h \varepsilon_{0} E_{r}(r)=\left\{\begin{array}{ll}
\pi r^{2} h \rho_{0} ; & r \leq R \\
\pi R^{2} h \rho_{0} ; & r \geq R
\end{array} \quad \rightarrow \quad E_{r}(r)= \begin{cases}\rho_{0} r /\left(2 \varepsilon_{0}\right) ; & r \leq R, \\
\rho_{0} R^{2} /\left(2 \varepsilon_{0} r\right) ; & r \geq R .\end{cases}\right.
$$

b) The current-density is the product of charge-density and velocity, that is, $J=\rho_{0} v_{0} \hat{\mathbf{z}}$.
c) Symmetry dictates that the H-field be azimuthal and independent of the azimuthal and vertical coordinates φ and z, that is, $\boldsymbol{H}(r, \varphi, z)=H_{\varphi}(r) \widehat{\boldsymbol{\varphi}}$. Now, imagine a circular loop of radius r
centered on the z-axis, as shown in figure (b) below. Application to this loop of the integral form of Maxwell's second equation $\oint_{\text {loop }} \boldsymbol{H} \cdot d \boldsymbol{\ell}=\int_{\text {surface }} \boldsymbol{J} \cdot d \boldsymbol{s}$ yields

$$
2 \pi r H_{\varphi}(r)=\left\{\begin{array}{ll}
\pi r^{2} \rho_{0} v_{0} ; & r \leq R \\
\pi R^{2} \rho_{0} v_{0} ; & r \geq R
\end{array} \quad \rightarrow \quad H_{\varphi}(r)= \begin{cases}1 / 2 \rho_{0} v_{0} r ; & r \leq R, \\
1 / 2 \rho_{0} v_{0} R^{2} / r ; & r \geq R .\end{cases}\right.
$$

d) The Lorentz force-density is given by

$$
\begin{aligned}
\boldsymbol{f}(\boldsymbol{r}, t) & =\rho(\boldsymbol{r}, t)[\boldsymbol{E}(\boldsymbol{r}, t)+\boldsymbol{v}(\boldsymbol{r}, t) \times \boldsymbol{B}(\boldsymbol{r}, t)]=\rho_{0}\left(E_{r} \hat{\boldsymbol{r}}+\mu_{0} v_{0} \hat{\mathbf{z}} \times H_{\varphi} \widehat{\boldsymbol{\varphi}}\right) \\
& =\rho_{0}\left(E_{r} \hat{\boldsymbol{r}}-\mu_{0} v_{0} H_{\varphi} \hat{\boldsymbol{r}}\right)=\rho_{0}\left[\rho_{0} r /\left(2 \varepsilon_{0}\right)-\left(\mu_{0} v_{0}\right)\left(1 / 2 \rho_{0} v_{0} r\right)\right] \hat{\boldsymbol{r}} \\
& =1 / 2 \mu_{0}\left(c^{2}-v_{0}^{2}\right) \rho_{0}^{2} r \hat{\boldsymbol{r}} .
\end{aligned}
$$

It is readily observed that the radially outward push of the electric force is proportional to $c^{2}=\left(\mu_{0} \varepsilon_{0}\right)^{-1}$, whereas the radially inward pull of the magnetic force is proportional to v_{0}^{2}. These two forces will cancel out only if $v_{0}=c$.

Problem 3)

a) The polarization \boldsymbol{P} has units of coulomb $/ \mathrm{m}^{2}$. Since the units of current are ampere, and since, by definition, electrical current I is the rate-of-flow of charge ΔQ during the time interval Δt, that is $I=\Delta Q / \Delta t$ in the limit when $\Delta t \rightarrow 0$, the units of charge are coulomb=ampere \cdot sec. Therefore, the units of \boldsymbol{P} are ampere $\cdot \mathrm{sec} / \mathrm{m}^{2}$.
b) The magnetization \boldsymbol{M} has units of weber $/ \mathrm{m}^{2}$. Since, by definition, $\boldsymbol{B}=\mu_{0} \boldsymbol{H}+\boldsymbol{M}$, the units of \boldsymbol{M} must be the same as those of \boldsymbol{B}. The Lorentz force law states that $\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{V} \times \boldsymbol{B})$, where \boldsymbol{F} is force (units: newton), q is electrical charge (units: coulomb), \boldsymbol{E} is electric field (units: volt $/ m$), \boldsymbol{V} is velocity (units: $\mathrm{m} / \mathrm{sec}$), and \boldsymbol{B} is magnetic induction (units: weber $/ \mathrm{m}^{2}$). We may thus write: newton $=\operatorname{coulomb} \cdot(\mathrm{m} / \mathrm{sec}) \cdot\left(\right.$ weber $\left./ \mathrm{m}^{2}\right)$. Now, from newton's law $\boldsymbol{F}=\mathrm{ma}$, we have newton $=\mathrm{kg} \cdot \mathrm{m} / \mathrm{sec}^{2}$. Also, from $I=\Delta Q / \Delta t$, we have coulomb $=$ ampere $\cdot \mathrm{sec}$. Consequently,

$$
\text { weber } / \mathrm{m}^{2}=\left(\mathrm{kg} \cdot \mathrm{~m} / \mathrm{sec}^{2}\right) /(\text { ampere } \cdot \mathrm{m})=\mathrm{kg} /\left(\text { ampere } \cdot \mathrm{sec}^{2}\right) .
$$

c) The electrical resistance R has units of ohm. According to Ohm's law, the voltage V and the current I of a resistor R are related via $V=R I$. Therefore, R has units of volt/ampere. From the

Lorentz force law cited in part (b), we know that newton=coulomb•(volt/m), that is, volt $=$ newton $\cdot \mathrm{m} /$ coulomb $=\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\right.$ ampere $\left.\cdot \mathrm{sec}^{3}\right)$. Consequently, ohm $=\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\right.$ ampere $\left.^{2} \cdot \mathrm{sec}^{3}\right)$.
d) The units of capacitance C are farad. The relation between electrical charge on the plates of a capacitor and the voltage difference between those plates is $Q=C V$. Consequently,

$$
\text { farad }=\text { coulomb } / \text { volt }=\text { ampere } \cdot \sec /(\text { newton } \cdot \mathrm{m} / \text { coulomb })=\text { ampere }^{2} \cdot \sec ^{4} /\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) .
$$

e) The units of inductance L are henry. The relation between the voltage V and the current I of a solenoid are $V=L(d I / d t)$. Therefore, the units of L must be volt•sec/ampere. We know from the Lorentz force law that volt = newton $\cdot \mathrm{m} /$ coulomb. Consequently,

$$
\text { henry }=\text { newton } \cdot \mathrm{m} \cdot \mathrm{sec} /(\text { coulomb } \cdot \text { ampere })=\mathrm{kg} \cdot \mathrm{~m}^{2} /\left(\text { ampere }^{2} \cdot \sec ^{2}\right) .
$$

f) The electromagnetic momentum-density $\boldsymbol{p}_{E M}=\boldsymbol{E} \times \boldsymbol{H} / c^{2}$ has units of the E-field times the units of the H-field divided by the units of velocity squared, i.e., (volt/m). (ampere $/ \mathrm{m}$) $/\left(\mathrm{m}^{2} / \mathrm{sec}^{2}\right.$). From the Lorentz force law we know that volt $/ \mathrm{m}=$ newton/coulomb $=\mathrm{kg} \cdot \mathrm{m} /\left(\mathrm{sec}^{2} \cdot \mathrm{coulomb}\right)$. Therefore, the units of $\boldsymbol{p}_{E M}$ are $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{sec}\right)$.

Problem 4)

a) The surface charge-density σ_{s} remains constant at all times as the cylinder spins up; in other words, the rotation of the cylinder does not affect the surface charge-density. Invoking the symmetry of the problem, one can argue that the E-field has only a radial component which does not vary with φ and z, that is, $\boldsymbol{E}(\boldsymbol{r}, t)=E_{r}(r) \hat{\boldsymbol{r}}$. Application of Gauss's law (i.e., Maxwell's first equation) to a coaxial cylinder of radius r and height h, as shown in figure (a) below, then yields

$$
2 \pi r h \varepsilon_{0} E_{r}(r)=\left\{\begin{array}{ll}
0 ; & r<R \\
2 \pi R h \sigma_{s} ; & r>R
\end{array} \rightarrow \quad \boldsymbol{E}(\boldsymbol{r}, t)= \begin{cases}0 ; & r<R \\
\sigma_{s} R /\left(r \varepsilon_{0}\right) ; & r>R\end{cases}\right.
$$

b) The surface current-density is the product of the surface charge-density and the linear velocity of the cylinder, that is, $\boldsymbol{J}_{s}(t)=\sigma_{s} R \omega(t) \widehat{\boldsymbol{\varphi}}$. Assuming the cylinder spins up slowly, the magnetic field outside the cylinder can be shown to be negligible. Inside the cylinder, the field is uniform
and aligned with the z-axis. Application of the integral form of Ampere's law (i.e., Maxwell's second equation $\oint_{\text {loop }} \boldsymbol{H} \cdot d \boldsymbol{\ell}=\int_{\text {surface }} \boldsymbol{J} \cdot d \boldsymbol{s}$) to the rectangular loop shown in figure (b) reveals that $\boldsymbol{H}(\boldsymbol{r}, t)=\sigma_{s} R \omega(t) \hat{\mathbf{z}}$, when $r<R$.
c) The energy-density of the magnetic field is $\mathcal{E}(\boldsymbol{r}, t)=1 / 2 \mu_{0} H^{2}(\boldsymbol{r}, t)=1 / 2 \mu_{0} \sigma_{s}^{2} R^{2} \omega^{2}(t)$. Since the volume associated with a unit length of the cylinder is πR^{2}, in the steady state when the cylinder reaches its constant angular velocity ω_{0}, the stored energy per unit length will be $1 / 2 \pi \mu_{0} \sigma_{s}^{2} R^{4} \omega_{0}^{2}$.
d) Consider a perpendicular cross-section of the cylinder, namely, a circle of radius R centered on the cylinder axis. We apply Faraday's law (i.e., Maxwell's third equation) to this loop in order to determine the induced E-field that opposes the angular acceleration of the cylinder. The integral form of Faraday's law is written

$$
\oint_{\text {loop }} \boldsymbol{E} \cdot d \boldsymbol{\ell}=-\frac{d}{d t} \int_{\text {surface }} \boldsymbol{B}(\boldsymbol{r}, t) \cdot d \boldsymbol{s}
$$

Application of the above equation to the circular loop of radius R yields

$$
2 \pi R E_{\varphi}(r=R, t)=-\left(\pi R^{2}\right)\left[\mu_{0} \sigma_{s} R \omega^{\prime}(t)\right] \quad \rightarrow \quad E_{\varphi}(r=R, t)=-1 / 2 \mu_{0} \sigma_{s} R^{2} \omega^{\prime}(t)
$$

e) The work done per unit length of the cylinder during the spin-up process is evaluated by integrating (from $t=0$ to ∞) the product of the electromagnetic force and velocity, namely,

$$
(2 \pi R) \boldsymbol{f}(r=R, t) \cdot \boldsymbol{v}(t)=(2 \pi R) \sigma_{s} E_{\varphi}(r=R, t) \widehat{\boldsymbol{\varphi}} \cdot R \omega(t) \widehat{\boldsymbol{\varphi}} .
$$

The mechanical energy needed to spin the cylinder from $\omega(0)=0$ to $\omega(\infty)=\omega_{0}$ is thus found to be

$$
-\int_{0}^{\infty}(2 \pi R) \boldsymbol{f}(r=R, t) \cdot \boldsymbol{v}(t) d t=\pi \mu_{0} \sigma_{s}^{2} R^{4} \int_{0}^{\infty} \omega^{\prime}(t) \omega(t) d t=1 / 2 \pi \mu_{0} \sigma_{s}^{2} R^{4} \omega_{0}^{2}
$$

f) The total mechanical energy needed to bring up the cylinder from its initial (stationary) state to its final state - where it spins at the constant angular velocity ω_{0} - is seen from parts (c) and (e) above to be exactly equal to the energy stored in the magnetic field within the cylinder.

