Problem 1)

Real Imaginary
a) $\boldsymbol{\alpha} \cdot \boldsymbol{\beta}=\left(\boldsymbol{\alpha}^{\prime}+\mathrm{i} \boldsymbol{\alpha}^{\prime \prime}\right) \cdot\left(\boldsymbol{\beta}^{\prime}+\mathrm{i} \boldsymbol{\beta}^{\prime \prime}\right)=\overbrace{\left(\boldsymbol{\alpha}^{\prime} \cdot \boldsymbol{\beta}^{\prime}-\boldsymbol{\alpha}^{\prime \prime} \cdot \boldsymbol{\beta}^{\prime \prime}\right.})+\overbrace{\mathrm{i}}^{\boldsymbol{\alpha}^{\prime} \cdot \boldsymbol{\beta}^{\prime \prime}+\boldsymbol{\alpha}^{\prime \prime} \cdot \boldsymbol{\beta}^{\prime}})$.
b) $\boldsymbol{\alpha} \times \boldsymbol{\beta}=\left(\boldsymbol{\alpha}^{\prime}+\mathrm{i} \boldsymbol{\alpha}^{\prime \prime}\right) \times\left(\boldsymbol{\beta}^{\prime}+\mathrm{i} \boldsymbol{\beta}^{\prime \prime}\right)=\left(\boldsymbol{\alpha}^{\prime} \times \boldsymbol{\beta}^{\prime}-\boldsymbol{\alpha}^{\prime \prime} \times \boldsymbol{\beta}^{\prime \prime}\right)+\mathrm{i}\left(\boldsymbol{\alpha}^{\prime} \times \boldsymbol{\beta}^{\prime \prime}+\boldsymbol{\alpha}^{\prime \prime} \times \boldsymbol{\beta}^{\prime}\right)$.
c) $\boldsymbol{\gamma} \times \boldsymbol{\gamma}=\left(\boldsymbol{\gamma}^{\prime}+\mathrm{i} \boldsymbol{\gamma}^{\prime \prime}\right) \times\left(\boldsymbol{\gamma}^{\prime}+\mathrm{i} \boldsymbol{\gamma}^{\prime \prime}\right)=\left(\boldsymbol{\gamma}^{\prime} \times{\boldsymbol{\boldsymbol { \gamma } ^ { \prime }}}^{0}-\boldsymbol{\gamma}^{\prime \prime} \times \boldsymbol{\gamma}^{\prime \prime}\right)+\mathrm{i}\left(\boldsymbol{\gamma}^{\prime} \times \boldsymbol{\gamma}^{\prime \prime}+\boldsymbol{\gamma}^{\prime \prime} \times \boldsymbol{\gamma}^{\prime}\right)=0+\mathrm{i} 0$.
d) $\boldsymbol{\alpha} \cdot(\boldsymbol{\beta} \times \boldsymbol{\gamma})=\left(\boldsymbol{\alpha}^{\prime}+\mathrm{i} \boldsymbol{\alpha}^{\prime \prime}\right) \cdot\left[\left(\boldsymbol{\beta}^{\prime}+\mathrm{i} \boldsymbol{\beta}^{\prime \prime}\right) \times\left(\boldsymbol{\gamma}^{\prime}+\mathrm{i} \boldsymbol{\gamma}^{\prime \prime}\right)\right]$

$$
\begin{aligned}
= & \left(\boldsymbol{\alpha}^{\prime}+\mathrm{i} \boldsymbol{\alpha}^{\prime \prime}\right) \cdot\left[\left(\boldsymbol{\beta}^{\prime} \times \boldsymbol{\gamma}^{\prime}-\boldsymbol{\beta}^{\prime \prime} \times \boldsymbol{\gamma}^{\prime \prime}\right)+\mathrm{i}\left(\boldsymbol{\beta}^{\prime} \times \boldsymbol{\gamma}^{\prime \prime}+\boldsymbol{\beta}^{\prime \prime} \times \boldsymbol{\gamma}^{\prime}\right)\right] \\
= & {\left[\boldsymbol{\alpha}^{\prime} \cdot\left(\boldsymbol{\beta}^{\prime} \times \boldsymbol{\gamma}^{\prime}-\boldsymbol{\beta}^{\prime \prime} \times \boldsymbol{\gamma}^{\prime \prime}\right)-\boldsymbol{\alpha}^{\prime \prime} \cdot\left(\boldsymbol{\beta}^{\prime} \times \boldsymbol{\gamma}^{\prime \prime}+\boldsymbol{\beta}^{\prime \prime} \times \boldsymbol{\gamma}^{\prime}\right)\right] \longleftarrow \text { Real } } \\
& +\mathrm{i}\left[\boldsymbol{\alpha}^{\prime} \cdot\left(\boldsymbol{\beta}^{\prime} \times \boldsymbol{\gamma}^{\prime \prime}+\boldsymbol{\beta}^{\prime \prime} \times \boldsymbol{\gamma}^{\prime}\right)+\boldsymbol{\alpha}^{\prime \prime} \cdot\left(\boldsymbol{\beta}^{\prime} \times \boldsymbol{\gamma}^{\prime}-\boldsymbol{\beta}^{\prime \prime} \times \boldsymbol{\gamma}^{\prime \prime}\right)\right] . \longleftarrow \text { Imaginary }
\end{aligned}
$$

Problem 2)

a) $\quad \boldsymbol{\nabla} \times(\boldsymbol{\nabla} \psi)=\boldsymbol{\nabla} \times\left\{\mathrm{i} \boldsymbol{k}_{1} \psi_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}-\omega_{1} t\right)\right]\right\}$

\[

\]

b)

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot(\psi \boldsymbol{A})= & \boldsymbol{\nabla} \cdot\left(\psi_{0} \boldsymbol{A}_{0} \exp \left\{\mathrm{i}\left[\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \cdot \boldsymbol{r}-\left(\omega_{1}+\omega_{2}\right) t\right]\right\}\right) \\
= & \mathrm{i} \psi_{0}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \cdot \boldsymbol{A}_{0} \exp \left\{\mathrm{i}\left[\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \cdot \boldsymbol{r}-\left(\omega_{1}+\omega_{2}\right) t\right]\right\} \\
= & \left\{\mathrm{i} \boldsymbol{k}_{1} \psi_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}-\omega_{1} t\right)\right]\right\} \cdot \boldsymbol{A}_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{2} \cdot \boldsymbol{r}-\omega_{2} t\right)\right] \\
& +\psi_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}-\omega_{1} t\right)\right]\left\{\mathrm{i} \boldsymbol{k}_{2} \cdot \boldsymbol{A}_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{2} \cdot \boldsymbol{r}-\omega_{2} t\right)\right]\right\} \\
= & (\boldsymbol{\nabla} \psi) \cdot \boldsymbol{A}+\psi(\boldsymbol{\nabla} \cdot \boldsymbol{A}) .
\end{aligned}
$$

c) $\quad \boldsymbol{\nabla} \times(\psi \boldsymbol{B})=\boldsymbol{\nabla} \times\left(\psi_{0} \boldsymbol{B}_{0} \exp \left\{\mathrm{i}\left[\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{3}\right) \cdot \boldsymbol{r}-\left(\omega_{1}+\omega_{3}\right) t\right]\right\}\right)$
$=\mathrm{i} \psi_{0}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{3}\right) \times \boldsymbol{B}_{0} \exp \left\{\mathrm{i}\left[\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{3}\right) \cdot \boldsymbol{r}-\left(\omega_{1}+\omega_{3}\right) t\right]\right\}$
$=\left\{\mathrm{i} \boldsymbol{k}_{1} \psi_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}-\omega_{1} t\right)\right]\right\} \times \boldsymbol{B}_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{3} \cdot \boldsymbol{r}-\omega_{3} t\right)\right]$

$$
+\psi_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}-\omega_{1} t\right)\right]\left\{\mathrm{i} \boldsymbol{k}_{3} \times \boldsymbol{B}_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{3} \cdot \boldsymbol{r}-\omega_{3} t\right)\right]\right\}
$$

$=(\nabla \psi) \times \boldsymbol{B}+\psi \boldsymbol{\nabla} \times \boldsymbol{B}$.
d) $\boldsymbol{\nabla} \cdot(\boldsymbol{A} \times \boldsymbol{B})=\boldsymbol{\nabla} \cdot\left(\boldsymbol{A}_{0} \times \boldsymbol{B}_{0} \exp \left\{\mathrm{i}\left[\left(\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) \cdot \boldsymbol{r}-\left(\omega_{2}+\omega_{3}\right) t\right]\right\}\right)$

$$
\begin{aligned}
&= \mathrm{i}\left(\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) \cdot\left(\boldsymbol{A}_{0} \times \boldsymbol{B}_{0}\right) \exp \left\{\mathrm{i}\left[\left(\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) \cdot \boldsymbol{r}-\left(\omega_{2}+\omega_{3}\right) t\right]\right\} \\
&=\mathrm{i} \boldsymbol{k}_{2} \cdot\left(\boldsymbol{A}_{0} \times \boldsymbol{B}_{0}\right) \exp \left\{\mathrm{i}\left[\left(\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) \cdot \boldsymbol{r}-\left(\omega_{2}+\omega_{3}\right) t\right]\right\} \\
&+\mathrm{i} \boldsymbol{k}_{3} \cdot\left(\boldsymbol{A}_{0} \times \boldsymbol{B}_{0}\right) \exp \left\{\mathrm{i}\left[\left(\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) \cdot \boldsymbol{r}-\left(\omega_{2}+\omega_{3}\right) t\right]\right\} \\
&=\left(\mathrm{i} \boldsymbol{k}_{2} \times \boldsymbol{A}_{0}\right) \cdot \boldsymbol{B}_{0} \exp \left\{\mathrm{i}\left[\left(\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) \cdot \boldsymbol{r}-\left(\omega_{2}+\omega_{3}\right) t\right]\right\} \\
&-\left(\mathrm{i} \boldsymbol{k}_{3} \times \boldsymbol{B}_{0}\right) \cdot \boldsymbol{A}_{0} \exp \left\{\mathrm{i}\left[\left(\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) \cdot \boldsymbol{r}-\left(\omega_{2}+\omega_{3}\right) t\right]\right\} \\
&=\left\{\mathrm{i} \boldsymbol{k}_{2} \times \boldsymbol{A}_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{2} \cdot \boldsymbol{r}-\omega_{2} t\right)\right]\right\} \cdot \boldsymbol{B}_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{3} \cdot \boldsymbol{r}-\omega_{3} t\right)\right] \\
&-\left\{\mathrm{i} \boldsymbol{k}_{3} \times \boldsymbol{B}_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{3} \cdot \boldsymbol{r}-\omega_{3} t\right)\right]\right\} \cdot \boldsymbol{A}_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{2} \cdot \boldsymbol{r}-\omega_{2} t\right)\right] \\
&=(\boldsymbol{\nabla} \times \boldsymbol{A}) \cdot \boldsymbol{B}-(\boldsymbol{\nabla} \times \boldsymbol{B}) \cdot \boldsymbol{A}=\boldsymbol{B} \cdot(\boldsymbol{\nabla} \times \boldsymbol{A})-\boldsymbol{A} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B}) .
\end{aligned}
$$

Problem 3)

a) The magnetic flux through the circular loop is the integral of the B-field over the surface are of the loop. The field is uniform and confined to an area A defined by the pole-pieces; therefore, $\Phi(t)=A B_{0} \cos (\omega t)$.
b) Using Stokes' theorem, Faraday's law, $\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t$, may be written in integral form as follows:

$$
\oint_{\text {loop }} \boldsymbol{E} \cdot d \boldsymbol{\ell}=-\frac{d}{d t} \int_{\text {surface }} \boldsymbol{B} \cdot d \boldsymbol{s}=-\frac{d \Phi(t)}{d t}=A B_{0} \omega \sin (\omega t) .
$$

Symmetry dictates that the E-field be uniform around the circle and directed along the azimuthal axis $\widehat{\boldsymbol{\varphi}}$. Therefore,

$$
2 \pi \rho E_{\varphi}=A B_{0} \omega \sin (\omega t) \quad \rightarrow \quad \boldsymbol{E}=\frac{A B_{0} \omega \sin (\omega t)}{2 \pi \rho} \widehat{\boldsymbol{\varphi}} .
$$

c) The induced voltage in the loop is $V(t)=\oint \boldsymbol{E} \cdot d \boldsymbol{\ell}=A B_{0} \omega \sin (\omega t)$. Considering that, in accordance with Ohm's law, $V(t)=R I(t)$, we will have $I(t)=\left(A B_{0} \omega / R\right) \sin (\omega t)$.

Problem 4)

a) Electric field \boldsymbol{E} [volt/meter]: Use Newton's second law $\boldsymbol{F}=\boldsymbol{m} \boldsymbol{a}$ and the Lorentz force law $\boldsymbol{F}=q \boldsymbol{E}$. The units of force \boldsymbol{F} are thus $\left[\mathrm{kg} \cdot\right.$ meter $\left./ \mathrm{sec}^{2}\right]$, and the units of the electric field are $\left[\mathrm{kg} \cdot\right.$ meter $/\left(\right.$ coulomb $\left.\left.\cdot \mathrm{sec}^{2}\right)\right]$ or $\left[\mathrm{kg} \cdot\right.$ meter $/\left(\right.$ ampere $\left.\left.\cdot \mathrm{sec}^{3}\right)\right]$.
b) Magnetic induction $\boldsymbol{B}\left[\right.$ weber $\left./ \mathrm{m}^{2}\right]$: Use Faraday's law, $\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t$, in conjunction with the units of \boldsymbol{E} determined in part (a). The curl operator does differentiation with respect to spatial coordinates; therefore, the units of $\boldsymbol{\nabla} \times \boldsymbol{E}$ are those of \boldsymbol{E} divided by the length unit, [meter]. On the right-hand-side of the equation, the time-derivative of \boldsymbol{B} has the units of \boldsymbol{B} divided by those of time, $[$ second $]$. Consequently, $\left[\right.$ weber $\left./ \mathrm{m}^{2}\right]=\left[\mathrm{kg} /\left(\right.\right.$ ampere $\left.\left.\cdot \mathrm{sec}^{2}\right)\right]$.
c) Poynting vector $\boldsymbol{S}=\boldsymbol{E} \times \boldsymbol{H}\left[\right.$ volt \cdot ampere $\left./ m^{2}\right]$: The units of \boldsymbol{H} are [ampere $/$ meter $]$, and the units of \boldsymbol{E} were found in part (a) to be $\left[\mathrm{kg} \cdot\right.$ meter $/\left(\right.$ ampere $\left.\left.\cdot \mathrm{sec}^{3}\right)\right]$. Multiplying the two, we find the units of \boldsymbol{S} to be $\left[\right.$ volt \cdot ampere $\left./ \mathrm{m}^{2}\right]=\left[\mathrm{kg} / \mathrm{sec}^{3}\right]$. Note that \boldsymbol{S} is expected to have the units of energy per unit area per unit time. Energy, however, has the units of force times displacement, that is, $\left[\mathrm{kg} \cdot\right.$ meter $\left.^{2} / \mathrm{sec}^{2}\right]$. Dividing by $\left[\right.$ meter $\left.^{2} \cdot \mathrm{sec}\right]$ then yields the units of S as before, namely, $\left[\mathrm{kg} / \mathrm{sec}^{3}\right]$.
d) Permittivity of free space $\varepsilon_{0}[$ farad/meter $]$: The charge Q and the voltage V of a capacitor are related via $Q=C V$. The capacitance C has units of [farad], the units of Q are [coulomb] $=[$ ampere $\cdot \mathrm{sec}]$, and the units of V are $\left[\mathrm{kg} \cdot\right.$ meter $^{2} /\left(\right.$ ampere $\left.\left.\cdot \mathrm{sec}^{3}\right)\right]$; see part (a). Consequently, the units of ε_{0} are $[$ farad $/$ meter $]=\left[\right.$ ampere ${ }^{2} \cdot \sec ^{4} /\left(\mathrm{kg} \cdot\right.$ meter $\left.\left.^{3}\right)\right]$.
e) Permeability of free space $\mu_{0}[$ henry $/$ meter $]$: Use the fact that in free space $\boldsymbol{B}=\mu_{0} \boldsymbol{H}$. The units of \boldsymbol{H} are [ampere/meter]; those of \boldsymbol{B} were found in part (b) to be $\left[\mathrm{kg} /\left(\right.\right.$ ampere $\left.\left.\cdot \mathrm{sec}^{2}\right)\right]$. Consequently, the units of μ_{0} are $[$ henry $/$ meter $]=\left[\mathrm{kg} \cdot\right.$ meter $/\left(\right.$ ampere $\left.\left.^{2} \cdot \sec ^{2}\right)\right]$.

