Problem 1) a) The linear velocity of the spherical surface is $\boldsymbol{V}(\rho=R, \theta, \phi)=(R \sin \theta) \omega \widehat{\boldsymbol{\phi}}$. Therefore, the surface current density is $\boldsymbol{J}_{s}(R, \theta, \phi, t)=\sigma_{s} \boldsymbol{V}(R, \theta, \phi)=\left(R \omega \sigma_{s} \sin \theta\right) \widehat{\boldsymbol{\phi}}$. The units of \boldsymbol{J}_{s} are the units of $R[\mathrm{~m}]$ times the units of $\omega\left[\mathrm{sec}^{-1}\right.$] times the units of σ_{s} [coulomb $\left./ \mathrm{m}^{2}\right]$, namely, [ampere/m].
b) In spherical coordinates, the divergence of the vector field \boldsymbol{J}_{s} whose only component is along the ϕ-axis, is given by $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{S}=\frac{1}{R \sin \theta} \frac{\partial J_{s \phi}}{\partial \phi}=0$. Since the surface-charge-density σ_{s} has no timedependence, its derivative with respect to time is zero, that is, $\frac{\partial \sigma_{s}}{\partial t}=0$. Clearly, $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{s}+\frac{\partial \sigma_{s}}{\partial t}=0$.

Problem 2)

$$
\begin{aligned}
\boldsymbol{E}(\boldsymbol{r}, t) & =\operatorname{Real}\left\{\boldsymbol{E}_{0} \exp [i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\} \\
& =\exp \left(-\boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}\right) \operatorname{Real}\left\{\left(\boldsymbol{E}_{0}^{\prime}+i \boldsymbol{E}_{0}^{\prime \prime}\right) \exp \left[i\left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}-\omega t\right)\right]\right\} \\
& =\exp \left(-\boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}\right) \operatorname{Real}\left\{\left(\boldsymbol{E}_{0}^{\prime}+i \boldsymbol{E}_{0}^{\prime \prime}\right)\left[\cos \left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}-\omega t\right)+i \sin \left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}-\omega t\right)\right]\right\} \\
& =\exp \left(-\boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}\right)\left[\boldsymbol{E}_{0}^{\prime} \cos \left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}-\omega t\right)-\boldsymbol{E}_{0}^{\prime \prime} \sin \left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}-\omega t\right)\right] .
\end{aligned}
$$

a) As a function of time, the field oscillates at the angular frequency ω.
b) The factor $\exp \left(-\boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}\right)$ is responsible for the decay of the field amplitude. The E-field thus decays along the direction of $\boldsymbol{k}^{\prime \prime}$ at a rate determined by the magnitude $k^{\prime \prime}$ of the vector $\boldsymbol{k}^{\prime \prime}$. The planes of constant amplitude are perpendicular to $\boldsymbol{k}^{\prime \prime}$.
c) The phase of the E-field is the argument of the sine and cosine functions, namely, $\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}-\omega t$. At any given time t, the phase is the same for all the points \boldsymbol{r} in a plane perpendicular to \boldsymbol{k}^{\prime}. Thus, within each and every plane that is perpendicular to \boldsymbol{k}^{\prime}, the E-field has the same phase at any given instant t of time. If two such planes are separated by a distance of $2 \pi / k^{\prime}$ (along the direction of \boldsymbol{k}^{\prime}), the phase difference between the two planes will be

$$
\left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}_{1}-\omega t\right)-\left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}_{2}-\omega t\right)=\boldsymbol{k}^{\prime} \cdot\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)=k^{\prime}\left(2 \pi / k^{\prime}\right)=2 \pi
$$

Therefore, at any given time t, the E-field amplitude is the same in all the planes that are perpendicular to \boldsymbol{k}^{\prime} and are separated from each other (along the direction of \boldsymbol{k}^{\prime}) by a distance of $2 \pi / k^{\prime}$.

Consider an arbitrary point in the three-dimensional Euclidean space whose position vector \boldsymbol{r} is aligned with the vector \boldsymbol{k}^{\prime}. If the length of this vector is increased by Δr while the time is advanced by Δt, the phase of the E-field will change by $k^{\prime} \Delta r-\omega \Delta t$. The change of phase will be zero if $\Delta r / \Delta t=\omega / k^{\prime}$. The phase velocity of the plane-wave is, therefore, $V_{\text {phase }}=\omega / k^{\prime}$.
d) The polarization state of the plane-wave is determined by $\boldsymbol{E}_{0}^{\prime}$ and $\boldsymbol{E}_{0}^{\prime \prime}$. The beam is linearly polarized if $\boldsymbol{E}_{0}^{\prime}=0$, or $\boldsymbol{E}_{0}^{\prime \prime}=0$, or $\boldsymbol{E}_{0}^{\prime}$ and $\boldsymbol{E}_{0}^{\prime \prime}$ are parallel to each other. The beam is circularly polarized if $\boldsymbol{E}_{0}^{\prime}$ and $\boldsymbol{E}_{0}^{\prime \prime}$ have equal lengths and are perpendicular to each other.

Problem 3) Consider a cylindrical can of arbitrary radius R and arbitrary length L centered on the wire, as shown in the figure below. We apply the integral form of Maxwell's $4^{\text {th }}$ equation, $\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$, to this can. Using Gauss's theorem, the integral form is found to be: $\oint \boldsymbol{B} \cdot d \boldsymbol{s}=0$. In the absence of magnetism, we have $\boldsymbol{M}=0$ and $\boldsymbol{B}=\mu_{\mathrm{o}} \boldsymbol{H}$. Consequently, Maxwell's $4^{\text {th }}$ equation demands that $\oint \boldsymbol{H} \cdot d \boldsymbol{s}=0$.

On the closed surface of the cylindrical can, only two components of the H-field contribute to the surface integral: (i) on the top and bottom facets, H_{z} has nonzero integrals; (ii) on the cylindrical surface, H_{ρ} makes a nonzero contribution to the integral. However, symmetry indicates that the contribution of H_{z} to the top facet is exactly cancelled out by its contribution to the bottom facetbecause the value of H_{z} (whatever it may be) cannot depend on the z-coordinate. As for H_{ρ}, its magnitude must
 be the same everywhere on the cylindrical surface, again because of symmetry; its contribution to the surface integral will thus be $2 \pi R L H_{\rho}$. The total integral of the H -field over the surface of the can is, therefore, $2 \pi R L H_{\rho}$, which must be zero in accordance with Maxwell's $4^{\text {th }}$ equation. We conclude that $H_{\rho}(\rho, \phi, z)$ must be zero everywhere.

Problem 4)

a) $\quad \rho_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)=-\boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}, t)=-\frac{\partial P_{z}}{\partial z}=-P_{0} \kappa \delta(y) \cos (\kappa z-\omega t)$.
$\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)=\frac{\partial \boldsymbol{P}}{\partial t}=-P_{0} \omega \delta(y) \cos (\kappa z-\omega t) \hat{\mathbf{z}}$.
$\boldsymbol{\nabla} \cdot \boldsymbol{J}+\frac{\partial \rho}{\partial t}=\frac{\partial J_{z}}{\partial z}+\frac{\partial \rho}{\partial t}=P_{0} \omega \kappa \delta(y) \sin (\kappa z-\omega t)-P_{0} \kappa \omega \delta(y) \sin (\kappa z-\omega t)=0$.
b) $\quad \rho_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)=0$.
$\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)=\mu_{\mathrm{o}}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}=\mu_{\mathrm{o}}^{-1}\left(\frac{\partial M_{y}}{\partial x} \widehat{\mathbf{z}}-\frac{\partial M_{y}}{\partial z} \widehat{\boldsymbol{x}}\right)=\mu_{\mathrm{o}}^{-1} M_{0} \kappa \delta(y) \sin (\kappa z-\omega t) \widehat{\boldsymbol{x}}$.
$\boldsymbol{\nabla} \cdot \boldsymbol{J}+\frac{\partial \rho}{\partial t}=\frac{\partial J_{x}}{\partial x}+\frac{\partial \rho}{\partial t}=0$.

Problem 5) Imagine a cylindrical can of arbitrary length L and radius R, where $R_{1}<R<R_{2}$, centered on the z-axis. The integral of the E-field over the closed cylindrical surface must be zero because (i) inside the metallic shell there cannot be any E-field, and (ii) E_{z} must vanish at the top and bottom facets of the can (because of symmetry). Therefore, the integral form of Maxwell's $1^{\text {st }}$ equation, namely, $\oint \boldsymbol{D} \cdot d \boldsymbol{s}=Q_{\text {total }}$, requires that the total free charge $Q_{\text {total }}$ contained within the can must be zero.

Since the wire has a charge of $\lambda_{0} L$ inside the can, the inner surface of the metallic shell must have an equal and opposite charge. The surface charge density on the inner surface of the shell is thus $\sigma_{1}=-\left(\lambda_{0} L\right) /\left(2 \pi R_{1} L\right)=-\lambda_{0} /\left(2 \pi R_{1}\right)$ [coulomb $/ \mathrm{m}^{2}$]. Since the shell is initially chargeneutral, the same amount of charge, albeit with opposite sign, must appear on its external surface. Therefore, $\sigma_{2}=\lambda_{0} /\left(2 \pi R_{2}\right)$ [coulomb $/ \mathrm{m}^{2}$].

