Problem 1) a) The linear velocity of the spherical surface is $V(\rho = R, \theta, \phi) = (R \sin \theta)\omega \hat{\phi}$. Therefore, the surface current density is $J_s(R, \theta, \phi, t) = \sigma_s V(R, \theta, \phi) = (R\omega\sigma_s \sin\theta)\hat{\phi}$. The units of J_s are the units of R [m] times the units of ω [sec⁻¹] times the units of σ_s [coulomb/m²], namely, [ampere/m].

b) In spherical coordinates, the divergence of the vector field \boldsymbol{J}_s whose only component is along the ϕ -axis, is given by $\boldsymbol{\nabla} \cdot \boldsymbol{J}_s = \frac{1}{R \sin \theta} \frac{\partial J_{s\phi}}{\partial \phi} = 0$. Since the surface-charge-density σ_s has no timedependence, its derivative with respect to time is zero, that is, $\frac{\partial \sigma_s}{\partial t} = 0$. Clearly, $\boldsymbol{\nabla} \cdot \boldsymbol{J}_s + \frac{\partial \sigma_s}{\partial t} = 0$.

Problem 2)

$$\begin{split} \boldsymbol{E}(\boldsymbol{r},t) &= \operatorname{Real}\{\boldsymbol{E}_{0} \exp[i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)]\}\\ &= \exp(-\boldsymbol{k}''\cdot\boldsymbol{r})\operatorname{Real}\{(\boldsymbol{E}_{0}'+i\boldsymbol{E}_{0}'')\exp[i(\boldsymbol{k}'\cdot\boldsymbol{r}-\omega t)]\}\\ &= \exp(-\boldsymbol{k}''\cdot\boldsymbol{r})\operatorname{Real}\{(\boldsymbol{E}_{0}'+i\boldsymbol{E}_{0}'')[\cos(\boldsymbol{k}'\cdot\boldsymbol{r}-\omega t)+i\sin(\boldsymbol{k}'\cdot\boldsymbol{r}-\omega t)]\}\\ &= \exp(-\boldsymbol{k}''\cdot\boldsymbol{r})\left[\boldsymbol{E}_{0}'\cos(\boldsymbol{k}'\cdot\boldsymbol{r}-\omega t)-\boldsymbol{E}_{0}''\sin(\boldsymbol{k}'\cdot\boldsymbol{r}-\omega t)\right]. \end{split}$$

a) As a function of time, the field oscillates at the angular frequency ω .

b) The factor $\exp(-\mathbf{k}'' \cdot \mathbf{r})$ is responsible for the decay of the field amplitude. The *E*-field thus decays along the direction of \mathbf{k}'' at a rate determined by the magnitude k'' of the vector \mathbf{k}'' . The planes of constant amplitude are perpendicular to \mathbf{k}'' .

c) The phase of the *E*-field is the argument of the sine and cosine functions, namely, $\mathbf{k}' \cdot \mathbf{r} - \omega t$. At any given time *t*, the phase is the same for all the points \mathbf{r} in a plane perpendicular to \mathbf{k}' . Thus, within each and every plane that is perpendicular to \mathbf{k}' , the *E*-field has the same phase at any given instant *t* of time. If two such planes are separated by a distance of $2\pi/k'$ (along the direction of \mathbf{k}'), the phase difference between the two planes will be

$$(\mathbf{k}' \cdot \mathbf{r}_1 - \omega t) - (\mathbf{k}' \cdot \mathbf{r}_2 - \omega t) = \mathbf{k}' \cdot (\mathbf{r}_1 - \mathbf{r}_2) = k'(2\pi/k') = 2\pi.$$

Therefore, at any given time *t*, the *E*-field amplitude is the same in all the planes that are perpendicular to \mathbf{k}' and are separated from each other (along the direction of \mathbf{k}') by a distance of $2\pi/k'$.

Consider an arbitrary point in the three-dimensional Euclidean space whose position vector \mathbf{r} is aligned with the vector \mathbf{k}' . If the length of this vector is increased by Δr while the time is advanced by Δt , the phase of the *E*-field will change by $k'\Delta r - \omega\Delta t$. The change of phase will be zero if $\Delta r/\Delta t = \omega/k'$. The phase velocity of the plane-wave is, therefore, $V_{\text{phase}} = \omega/k'$.

d) The polarization state of the plane-wave is determined by E'_0 and E''_0 . The beam is linearly polarized if $E'_0 = 0$, or $E''_0 = 0$, or E''_0 and E''_0 are parallel to each other. The beam is circularly polarized if E'_0 and E''_0 have equal lengths *and* are perpendicular to each other.

Problem 3) Consider a cylindrical can of arbitrary radius *R* and arbitrary length *L* centered on the wire, as shown in the figure below. We apply the integral form of Maxwell's 4th equation, $\nabla \cdot B = 0$, to this can. Using Gauss's theorem, the integral form is found to be: $\oint B \cdot ds = 0$. In the absence of magnetism, we have M = 0 and $B = \mu_0 H$. Consequently, Maxwell's 4th equation demands that $\oint H \cdot ds = 0$.

On the closed surface of the cylindrical can, only two components of the *H*-field contribute to the surface integral: (i) on the top and bottom facets, H_z has nonzero integrals; (ii) on the cylindrical surface, H_ρ makes a nonzero contribution to the integral. However, symmetry indicates that the contribution of H_z to the top facet is exactly cancelled out by its contribution to the bottom facetbecause the value of H_z (whatever it may be) cannot depend on the z-coordinate. As for H_ρ , its magnitude must be the same everywhere on the cylindrical surface, again

because of symmetry; its contribution to the surface integral will thus be $2\pi RLH_{\rho}$. The total integral of the *H*-field over the surface of the can is, therefore, $2\pi RLH_{\rho}$, which must be zero in accordance with Maxwell's 4th equation. We conclude that $H_{\rho}(\rho, \phi, z)$ must be zero everywhere.

Problem 4)

a)
$$\rho_{\text{bound}}^{(e)}(\boldsymbol{r},t) = -\boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r},t) = -\frac{\partial P_z}{\partial z} = -P_0 \kappa \,\delta(y) \cos(\kappa z - \omega t).$$
$$\boldsymbol{J}_{\text{bound}}^{(e)}(\boldsymbol{r},t) = \frac{\partial P}{\partial t} = -P_0 \omega \delta(y) \cos(\kappa z - \omega t) \hat{\boldsymbol{z}}.$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{J} + \frac{\partial \rho}{\partial t} = \frac{\partial J_z}{\partial z} + \frac{\partial \rho}{\partial t} = P_0 \omega \kappa \delta(y) \sin(\kappa z - \omega t) - P_0 \kappa \omega \,\delta(y) \sin(\kappa z - \omega t) = 0.$$

b)
$$\rho_{\text{bound}}^{(e)}(\boldsymbol{r},t) = 0.$$

$$\boldsymbol{J}_{\text{bound}}^{(e)}(\boldsymbol{r},t) = \boldsymbol{\mu}_{0}^{-1}\boldsymbol{\nabla} \times \boldsymbol{M} = \boldsymbol{\mu}_{0}^{-1}\left(\frac{\partial M_{y}}{\partial x}\hat{\boldsymbol{z}} - \frac{\partial M_{y}}{\partial z}\hat{\boldsymbol{x}}\right) = \boldsymbol{\mu}_{0}^{-1}M_{0}\kappa\,\delta(y)\sin(\kappa z - \omega t)\hat{\boldsymbol{x}}.$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{J} + \frac{\partial\rho}{\partial t} = \frac{\partial J_{x}}{\partial x} + \frac{\partial\rho}{\partial t} = 0.$$

Problem 5) Imagine a cylindrical can of arbitrary length *L* and radius *R*, where $R_1 < R < R_2$, centered on the *z*-axis. The integral of the *E*-field over the closed cylindrical surface must be zero because (i) inside the metallic shell there cannot be any *E*-field, and (ii) E_z must vanish at the top and bottom facets of the can (because of symmetry). Therefore, the integral form of Maxwell's 1^{st} equation, namely, $\oint \mathbf{D} \cdot d\mathbf{s} = Q_{\text{total}}$, requires that the total free charge Q_{total} contained within the can must be zero.

Since the wire has a charge of $\lambda_0 L$ inside the can, the inner surface of the metallic shell must have an equal and opposite charge. The surface charge density on the inner surface of the shell is thus $\sigma_1 = -(\lambda_0 L)/(2\pi R_1 L) = -\lambda_0/(2\pi R_1)$ [coulomb/m²]. Since the shell is initially chargeneutral, the same amount of charge, albeit with opposite sign, must appear on its external surface. Therefore, $\sigma_2 = \lambda_0/(2\pi R_2)$ [coulomb/m²].