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Opti 501 1st Midterm Solutions 10/1/2013 
 
 
Problem 1) a) The linear velocity of the spherical surface is 𝑽(𝜌 = 𝑅,𝜃,𝜙) = (𝑅 sin𝜃)𝜔 𝝓� . 
Therefore, the surface current density is 𝑱𝑠(𝑅,𝜃,𝜙, 𝑡) = 𝜎𝑠𝑽(𝑅,𝜃,𝜙) = (𝑅𝜔𝜎𝑠 sin𝜃)𝝓� . The 
units of 𝑱𝑠 are the units of 𝑅 [m] times the units of 𝜔 [sec-1] times the units of 𝜎𝑠 [coulomb/m2], 
namely, [ampere/m].  

b) In spherical coordinates, the divergence of the vector field 𝑱𝑠 whose only component is along 
the 𝜙-axis, is given by 𝜵 ∙ 𝑱𝑠 = 1

𝑅 sin𝜃
𝜕𝐽𝑠𝜙
𝜕𝜙

= 0. Since the surface-charge-density 𝜎𝑠 has no time-

dependence, its derivative with respect to time is zero, that is, 𝜕𝜎𝑠
𝜕𝑡

= 0. Clearly, 𝜵 ∙ 𝑱𝑠 + 𝜕𝜎𝑠
𝜕𝑡

= 0. 
 
Problem 2)  

 𝑬(𝒓, 𝑡) = Real{𝑬0 exp[𝑖(𝒌 ∙ 𝒓 − 𝜔𝑡)]}  

 = exp(−𝒌″ ∙ 𝒓) Real{(𝑬0′ + 𝑖𝑬0″) exp[𝑖(𝒌′ ∙ 𝒓 − 𝜔𝑡)]} 

 = exp(−𝒌″ ∙ 𝒓) Real{(𝑬0′ + 𝑖𝑬0″)[cos(𝒌′ ∙ 𝒓 − 𝜔𝑡) + 𝑖 sin(𝒌′ ∙ 𝒓 − 𝜔𝑡)]} 

 = exp(−𝒌″ ∙ 𝒓) [𝑬0′ cos(𝒌′ ∙ 𝒓 − 𝜔𝑡) − 𝑬0″ sin(𝒌′ ∙ 𝒓 − 𝜔𝑡)]. 

a) As a function of time, the field oscillates at the angular frequency 𝜔. 

b) The factor exp(−𝒌″ ∙ 𝒓) is responsible for the decay of the field amplitude. The E-field thus 
decays along the direction of 𝒌″ at a rate determined by the magnitude 𝑘″ of the vector 𝒌″. The 
planes of constant amplitude are perpendicular to 𝒌″. 

c) The phase of the E-field is the argument of the sine and cosine functions, namely, 𝒌′ ∙ 𝒓 − 𝜔𝑡. 
At any given time t, the phase is the same for all the points 𝒓 in a plane perpendicular to 𝒌′. 
Thus, within each and every plane that is perpendicular to 𝒌′, the E-field has the same phase at 
any given instant t of time. If two such planes are separated by a distance of 2𝜋/𝑘′ (along the 
direction of 𝒌′), the phase difference between the two planes will be 

 (𝒌′ ∙ 𝒓1 − 𝜔𝑡) − (𝒌′ ∙ 𝒓𝟐 − 𝜔𝑡) = 𝒌′ ∙ (𝒓1 − 𝒓2) = 𝑘′(2𝜋/𝑘′) = 2𝜋. 

Therefore, at any given time t, the E-field amplitude is the same in all the planes that are 
perpendicular to 𝒌′ and are separated from each other (along the direction of 𝒌′) by a distance of 
2𝜋/𝑘′. 

Consider an arbitrary point in the three-dimensional Euclidean space whose position vector 
𝒓 is aligned with the vector 𝒌′. If the length of this vector is increased by ∆𝑟 while the time is 
advanced by ∆𝑡, the phase of the E-field will change by 𝑘′∆𝑟 − 𝜔∆𝑡. The change of phase will 
be zero if ∆𝑟/∆𝑡 = 𝜔/𝑘′. The phase velocity of the plane-wave is, therefore, 𝑉phase = 𝜔/𝑘′. 

d) The polarization state of the plane-wave is determined by 𝑬0′  and 𝑬0″. The beam is linearly 
polarized if 𝑬0′ = 0, or 𝑬0″ = 0, or 𝑬0′  and 𝑬0″ are parallel to each other. The beam is circularly 
polarized if 𝑬0′  and 𝑬0″ have equal lengths and are perpendicular to each other. 
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Problem 3) Consider a cylindrical can of arbitrary radius R and arbitrary length L centered on 
the wire, as shown in the figure below. We apply the integral form of Maxwell’s 4th equation, 
𝜵 ∙ 𝑩 = 0, to this can. Using Gauss’s theorem, the integral form is found to be: ∮𝑩 ∙ 𝑑𝒔 = 0. In 
the absence of magnetism, we have 𝑴 = 0 and 𝑩 = 𝜇o𝑯. Consequently, Maxwell’s 4th equation 
demands that ∮𝑯 ∙ 𝑑𝒔 = 0. 

On the closed surface of the cylindrical can, only two 
components of the H-field contribute to the surface integral: 
(i) on the top and bottom facets, 𝐻𝑧 has nonzero integrals; 
(ii) on the cylindrical surface, 𝐻𝜌 makes a nonzero 
contribution to the integral. However, symmetry indicates 
that the contribution of 𝐻𝑧 to the top facet is exactly 
cancelled out by its contribution to the bottom facet –
because the value of 𝐻𝑧 (whatever it may be) cannot 
depend on the z-coordinate. As for 𝐻𝜌, its magnitude must 
be the same everywhere on the cylindrical surface, again 
because of symmetry; its contribution to the surface integral will thus be 2𝜋𝑅𝐿𝐻𝜌. The total 
integral of the H-field over the surface of the can is, therefore, 2𝜋𝑅𝐿𝐻𝜌, which must be zero in 
accordance with Maxwell’s 4th equation. We conclude that 𝐻𝜌(𝜌,𝜙, 𝑧) must be zero everywhere. 
 
Problem 4)  

a) 𝜌bound
(e) (𝒓, 𝑡) = −𝜵 ∙ 𝑷(𝒓, 𝑡) = −𝜕𝑃𝑧

𝜕𝑧
= −𝑃0𝜅 𝛿(𝑦) cos(𝜅𝑧 − 𝜔𝑡). 

 𝑱bound
(e) (𝒓, 𝑡) = 𝜕𝑷

𝜕𝑡
= −𝑃0𝜔𝛿(𝑦) cos(𝜅𝑧 − 𝜔𝑡)𝒛�. 

 𝜵 ∙ 𝑱 + 𝜕𝜌
𝜕𝑡

= 𝜕𝐽𝑧
𝜕𝑧

+ 𝜕𝜌
𝜕𝑡

= 𝑃0𝜔𝜅𝛿(𝑦) sin(𝜅𝑧 − 𝜔𝑡) − 𝑃0𝜅𝜔 𝛿(𝑦) sin(𝜅𝑧 − 𝜔𝑡) = 0. 

b) 𝜌bound
(e) (𝒓, 𝑡) = 0. 

 𝑱bound
(e) (𝒓, 𝑡) = 𝜇o−1𝜵 × 𝑴 = 𝜇o−1 �

𝜕𝑀𝑦

𝜕𝑥
𝒛� − 𝜕𝑀𝑦

𝜕𝑧
𝒙�� = 𝜇o−1𝑀0𝜅 𝛿(𝑦) sin(𝜅𝑧 − 𝜔𝑡)𝒙�. 

 𝜵 ∙ 𝑱 + 𝜕𝜌
𝜕𝑡

= 𝜕𝐽𝑥
𝜕𝑥

+ 𝜕𝜌
𝜕𝑡

= 0. 

 
Problem 5) Imagine a cylindrical can of arbitrary length L and radius 𝑅, where 𝑅1 < 𝑅 < 𝑅2, 
centered on the z-axis. The integral of the E-field over the closed cylindrical surface must be zero 
because (i) inside the metallic shell there cannot be any E-field, and (ii) 𝐸𝑧 must vanish at the top 
and bottom facets of the can (because of symmetry). Therefore, the integral form of Maxwell’s 
1st equation, namely, ∮𝑫 ∙ 𝑑𝒔 = 𝑄total, requires that the total free charge 𝑄total contained within 
the can must be zero. 

Since the wire has a charge of 𝜆0𝐿 inside the can, the inner surface of the metallic shell must 
have an equal and opposite charge. The surface charge density on the inner surface of the shell is 
thus 𝜎1 =– (𝜆0𝐿)/(2𝜋𝑅1𝐿) = −𝜆0/(2𝜋𝑅1) [coulomb/m2]. Since the shell is initially charge-
neutral, the same amount of charge, albeit with opposite sign, must appear on its external 
surface. Therefore, 𝜎2 = 𝜆0/(2𝜋𝑅2) [coulomb/m2]. 
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