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Opti 501 1st Midterm Solutions 10/2/2012 
 

Problem 1) a) The amount of charge flowing per unit time through each and every cross-section 
perpendicular to the z-axis is given by 

 Io=oV. (1) 

Note that the units on both sides of the above equation are [coulomb/meter]. 
 
b) Application of Maxwell’s 1st equation to a cylinder of radius r and unit height along z yields 
the E-field as E(r,, z) =or^ /(2or). Similarly, application of Maxwell’s 2nd equation to a 
circular loop of radius r parallel to the xy-plane yields the H-field as H(r,, z) =oV

^
/(2r). 
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Considering that Jfree = 0 in the surrounding space, and that D = oE is time-independent, the 
right-hand side of the above equation is equal to Jfree +D/ t. Maxwell’s 2nd equation is thus 
satisfied. 
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Since B =oH is time-independent, the right-hand side of the above equation is equal to 
B/ t  and, therefore, Maxwell’s 3rd equation is satisfied. 
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Electromagnetic energy thus flows along the z-axis within the free space region surrounding 
the rod. The rate of flow of this energy drops with the square of radial distance from the rod. 
 
Problem 2) 
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It is seen that Maxwell’s 1st and 4th equations are already satisfied. As for the 2nd and 3rd 
equations, we note that Eq.(2) above yields Eo/Ho= ko/(oo), whereas Eq.(3) yields 
Eo/Ho=oo/ko. Consequently, we must have ko/(oo) =oo/ko, which yields ko =o/c. 
Substitution into either Eq.(2) or Eq.(3) now reveals that Eo/Ho= Zo. 
 
b) The discontinuity of D┴= oEz at each surface is equal to the surface charge-density at that 
surface, that is, 

  s(x,y,z = ±½d, t) =  oEocos(koyot). (5) 

Similarly, the discontinuity of H|| = Hx at each surface is equal to the surface current-density 
at the corresponding surface, with the current’s direction being perpendicular to that of the H-
field. We thus have 

  Js(x,y,z = ±½d, t) = Hocos(koyot) y^ . (6) 

c) At each surface, the charge-current continuity equation  ·J + / t = 0 reduces to  Jsy / y + 
s / t = 0. With the help of Eqs. (5) and (6), we write the continuity equation as follows: 

  Jsy / y +s / t = ± Hokosin(koyot)  oEoosin(koyot) 

 = ± (HokooEoo)sin(koyot) = 0. (7) 

In the last line of the above equation, we have used Eq.(2) to set Hoko  equal to oEoo. 
 
Problem 3) a) The orbital angular momentum of the revolving particle is L = rp = mVro z^ . 

(Digression: In quantum mechanics, this angular momentum is quantized, assuming only values 
that are integer multiples of Planck’s reduced constant ћ. This is equivalent to imposing Bohr’s 
condition on the circumference 2ro of the orbit, namely, that the circumference must be an 
integer-multiple of the particle’s DeBroglie wavelength  , which is related to its momentum via 
p=ћk = 2ћ /. When the particle is in its lowest Bohr orbital, we have L = mVro = ћ .) 

b) Let the charge –q be distributed uniformly around the perimeter of the circle of radius ro, thus 
forming a closed loop. The linear charge-density will then be –q /(2ro), and the loop’s current in 
the ^  direction will be Io = qV/(2ro). The magnetic dipole moment is readily seen to be 


m =o( ro

2)Io  z^ = –½oroqV z^ . In terms of its orbital angular momentum, we may write the 

magnetic moment of the circulating negative charge as 

m = –(oq /2m)L . 

Alternatively, we may find the current Io by noting that the period of rotation is T = 2ro/V. 
Since, by definition, current is the amount of charge passing through a cross-section of the loop 
per unit time, we may write Io = q/T = qV/(2ro). Either way, we find the same answer. 

c) The force exerted on the negative charge by the electric field of the central (positive and 
stationary) charge and by the externally applied, uniform magnetic field is given by the Lorentz 
law, as follows: 
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d) The linear momentum of the negative charge is .̂mVp   In a short time 

interval t, the particle moves a distance Vt along its orbit, sweeping a small 
angle  = Vt /ro. The momentum p thus rotates through the same angle, 
corresponding to a change of momentum  p = mV r^ = mV 2/ro)t r^ . 
Newton’s law, F = dp/dt, thus yields 
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Digression: One may rewrite Eq.(2) as an equation relating the radius ro to the orbital angular 
momentum L = mVro . Eliminating the particle velocity V from Eq.(2) and rearranging the 
various terms, we find 
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In the absence of the external field Ho, solving the above equation yields ro= 4oL 2/(mq2), 
which, for L = ћ , is the expression of the Bohr radius for the hydrogen atom. In the presence of 
an external magnetic field (not too large), the usual assumption is that ro remains intact while the 
particle adjusts its velocity V to ensure that Eq.(2) continues to be satisfied. This is equivalent to 
adjusting the angular momentum L in order to satisfy Eq.(3) for the constant value of 
ro= 4oLo

2/(mq2). For ordinary magnetic fields, the correction is small, allowing one to replace 
L  with (1+)Lo, with the fractional correction-factor   being well below unity. We will have 
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The magnetic moment ,

m  being proportional to the angular momentum L , undergoes a 

similar change in response to the external magnetic field. We will have 
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This is the classical explanation for the phenomenon of diamagnetism associated with bound 
electrons, as originally formulated by Joseph Larmor. (The conduction electrons’ diamagnetism, 
often referred to as the Landau diamagnetism, has a different explanation.) 
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