Problem 1) From Maxwell's $4^{\text {th }}$ equation, we find the bound magnetic charge-density to be given by $\rho_{\text {bound }}^{(m)}=-\nabla \cdot M(\boldsymbol{r})$. Take a small pillbox and place it anywhere inside the sphere. The magnetization entering the box will be equal to that leaving the box and, therefore, the divergence of $\boldsymbol{M}(\boldsymbol{r})=M_{0} \hat{\mathbf{z}}$ will be zero everywhere inside the sphere. The only points where the divergence will be nonzero are at the surface of the sphere. The figure shows a small, thin pillbox placed at $(r=R, \theta, \phi)$. Let A and h denote the base area and height of the pillbox, respectively; both A and h could be as small as desired. The flux of \boldsymbol{M} entering from the bottom of the pillbox is $M_{0} A \cos \theta$, and this is the only contribution to the integral of $\boldsymbol{M}(\boldsymbol{r})$ over
 the pillbox surface, provided that h is much small than the pillbox diameter. The divergence of \boldsymbol{M} at ($r=R, \theta, \phi$) is thus given by $-M_{0} A \cos \theta /(A h)$ in the limit of small A and h. Therefore, $\rho_{\text {bound }}^{(m)}(R, \theta, \phi)=M_{0} \cos \theta / h$. Since the charges are confined to the surface, we should use the surface-charge-density $\sigma_{\text {bound }}^{(m)}=h \rho_{\text {bound }}^{(m)}$ instead of the volume charge-density. Consequently, $\sigma_{\text {bound }}^{(m)}(R, \theta, \phi)=M_{0} \cos \theta$.

To determine the bound electric current-density $\boldsymbol{J}_{\text {bound }}^{(e)}=\mu_{0}^{-1} \nabla \times \boldsymbol{M}(\boldsymbol{r})$, we use a small rectangular loop (length $=\ell$, width $=w$) at various locations within and on the surface of the sphere in order to calculate the curl of \boldsymbol{M}. For all locations within the sphere and for all orientations of the loop, the integral of $\boldsymbol{M}(\boldsymbol{r})$ around the loop turns out to be zero. When the loop is placed on the surface at $(r=R, \theta, \phi)$ and oriented perpendicular to $\hat{\phi}$, as shown, the line integral on the lower leg of the loop will be nonzero $\left(\ell M_{0} \sin \theta\right)$. The curl of $\boldsymbol{M}(\boldsymbol{r})$ will then be nonzero, as the other legs do not contribute to the integral, provided that $w \ll \ell$. The curl will then be given by $\left[\ell M_{0} \sin \theta /(\ell w)\right] \hat{\phi}$ in the limit when ℓ and w both tend to zero. The bound current-density at $(r=R, \theta, \phi)$ is thus given by
 $\boldsymbol{J}_{\text {bound }}^{(e)}=\mu_{0}^{-1}\left(M_{0} \sin \theta / w\right) \hat{\boldsymbol{\phi}}$. Since the current is confined to a thin layer on the surface, we could use the surface-current-density $\boldsymbol{J}_{\text {s-bound }}^{(e)}=w \boldsymbol{J}_{\text {bound }}^{(e)}$ instead of the bulk current-density. Consequently, $\boldsymbol{J}_{\text {s-bound }}^{(e)}=\mu_{0}^{-1} M_{0} \sin \theta \hat{\boldsymbol{\phi}}$.

Problem 2)

a) $\boldsymbol{E}^{\text {(total) }}=\boldsymbol{E}^{(\text {inc) })}+\boldsymbol{E}^{(\text {ref })}=E_{0} \hat{\boldsymbol{x}}\{\cos [(\omega / c) z-\omega t]-\cos [(\omega / c) z+\omega t]\}=2 E_{0} \hat{\boldsymbol{x}} \sin (\omega z / c) \sin (\omega t)$.

$$
\boldsymbol{H}^{\text {(total) }}=\boldsymbol{H}^{(\text {inc) })}+\boldsymbol{H}^{\text {(ref) }}=\left(E_{0} / Z_{0}\right) \hat{\boldsymbol{y}}\{\cos [(\omega / c) z-\omega t]+\cos [(\omega / c) z+\omega t]\}=2\left(E_{0} / Z_{0}\right) \hat{y} \cos (\omega z / c) \cos (\omega t) .
$$

b) The E-field vanishes where $\sin (\omega z / c)=0$, that is, $z=0,-\lambda / 2,-\lambda,-3 \lambda / 2, \ldots$. Here $\lambda=2 \pi c / \omega$. The H-field vanishes where $\cos (\omega z / c)=0$, that is, $z=-\lambda / 4,-3 \lambda / 4,-5 \lambda / 4, \ldots$.
c) Energy density of the E-field: $\frac{1}{2} \varepsilon_{0}|\boldsymbol{E}|^{2}=2 \varepsilon_{0} E_{0}^{2} \sin ^{2}(\omega z / c) \sin ^{2}(\omega t)$. Energy density of the H-field: $\frac{1}{2} \mu_{0}|\boldsymbol{H}|^{2}=2 \varepsilon_{0} E_{o}^{2} \cos ^{2}(\omega z / c) \cos ^{2}(\omega t)$.
d) $\boldsymbol{S}(z, t)=\boldsymbol{E}^{(\text {total })} \times \boldsymbol{H}^{(\text {total) })}=\left(E_{o}^{2} / Z_{o}\right) \hat{\mathbf{z}} \sin (2 \omega z / c) \sin (2 \omega t)$.

The z-dependence of the Poynting vector, $\sin (2 \omega z / c)=\sin (4 \pi z / \lambda)$, reveals that $S(z, t)$ is zero at all integer multiples of $\lambda / 4$. Therefore, where either the E-field or the H-field of the standing wave has a node, no energy flows at all. The energy only flows along z in between these adjacent nodes, which are separated by intervals of $\Delta z=\lambda / 4$. The time-dependence of the Poynting vector, $\sin (2 \omega t)$, shows that energy flow along z changes direction at twice the optical frequency ω. There are periodic instants when the energy is entirely in the E-field, followed by instants when the energy is entirely in the H -field. In between, the energy moves either slightly to the right or slightly to the left along z, in order to maintain the E - and H-field energy profiles found in part (c).

Problem 3)

a) At the mirror surface, we have $z=0$ and the tangential E-field is along the x-axis. Adding the x-components of the incident and reflected E-fields, we find

$$
E_{x}{ }^{(\text {inc })}+E_{x}^{(\text {ref })}=E_{0} \cos \theta \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-c t]\}-E_{0} \cos \theta \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-c t]\}=0 .
$$

Since the fields inside the perfectly-conducting mirror are zero, the continuity of the tangential E-field requires $E_{X}{ }^{\text {(total) }}$ at the front facet of the mirror to vanish. This is indeed the case for the tangential component of the E-field at $z=0$.
b) At the front facet, we have $z=0$ and the tangential H-field is along the y-axis. Adding the y components of the incident and reflected H-fields, we find

$$
H_{y}^{(\text {inc })}+H_{y}^{(\text {ref })}=2\left(E_{0} / Z_{o}\right) \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-c t]\} .
$$

Since the H-field within the perfectly-conducting mirror is zero, the discontinuity of H_{y} must be accounted for by the presence of a surface-current-density whose magnitude is equal to H_{y} at the mirror surface, and whose direction, while perpendicular to the H -field, follows the right-hand rule. We will have

$$
J_{s}(x, y, z=0, t)=2\left(E_{0} / Z_{0}\right) \hat{x} \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-c t]\} .
$$

c) At the front facet, we have $z=0$ and the perpendicular E-field is along the z-axis. Adding the z-components of the incident and reflected E-fields, we find

$$
E_{z}^{(\text {inc })}+E_{z}^{(\text {ref })}=-2 E_{0} \sin \theta \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-c t]\} .
$$

Since the E-field within the perfectly-conducting mirror is zero, the discontinuity of E_{z} must be accounted for by the presence of a surface-charge-density whose magnitude is equal to $\varepsilon_{0} E_{z}$ at the mirror surface. We find

$$
\sigma_{s}(x, y, z=0, t)=2 \varepsilon_{0} E_{0} \sin \theta \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-c t]\}
$$

d) Charge-current continuity equation:

$$
\begin{aligned}
\nabla \cdot \mathbf{J}_{s}+\partial \sigma_{s} / \partial t=\partial J_{s X} / \partial x+\partial \sigma_{s} / \partial t= & 2 \mathrm{i}(\omega / c) \sin \theta\left(E_{0} / Z_{0}\right) \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-c t]\} \\
& -2 \mathrm{i} \omega \varepsilon_{0} E_{0} \sin \theta \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-c t]\} \\
& =2 \mathrm{i} \omega\left(\varepsilon_{0}-\varepsilon_{0}\right) E_{0} \sin \theta \exp \{\mathrm{i}(\omega / c)[(\sin \theta) x-c t]\}=0 .
\end{aligned}
$$

