....

(1c)

Problem 1) Let the mirror acquire a velocity V along a direction that makes an angle θ with the x-axis within the xy-plane. Denoting by \mathcal{E}' the energy of the light pulse after reflection, conservation of energy and momentum before and after reflection yields the following equations.

a) Relativistic treatment:

Energy conservation:

$$\mathcal{E} + M_0 c^2 = \mathcal{E}' + M_0 c^2 / \sqrt{1 - V^2 / c^2}$$
 (1a)

g x:
$$\mathcal{E}/c = M_0 V \cos\theta / \sqrt{1 - V^2/c^2}$$
 (1b)
g v: $(\mathcal{E}'/c) + M_0 V \sin\theta / \sqrt{1 - V^2/c^2} = 0$ (1c)

Momentum conservation along v:
$$(\mathcal{E}'/c) + M_0 V \sin \theta / \sqrt{1-}$$

These three equations must now be solved for the three unknowns, \mathcal{E}' , V, and θ . Dividing Eq. (1c) by Eq.(1b) yields: $\tan \theta = -\mathcal{E}'/\mathcal{E}$. Substituting $\mathcal{E}' = -\mathcal{E} \tan \theta$ in Eq.(1a) and solving for V, we find

$$\sqrt{1 - V^2/c^2} = M_0 c^2 / [M_0 c^2 + (1 + \tan \theta) \mathcal{E}],$$
(2a)

$$V = c \sqrt{2M_o c^2 (1 + \tan\theta)\mathcal{E} + (1 + \tan\theta)^2 \mathcal{E}^2} / [M_o c^2 + (1 + \tan\theta)\mathcal{E}].$$
(2b)

The above expressions for V and $\sqrt{1-V^2/c^2}$ may now be placed into Eq.(1b) to yield

$$\mathcal{E} = \cos\theta \sqrt{2}M_{\rm o}c^2(1 + \tan\theta)\mathcal{E} + (1 + \tan\theta)^2\mathcal{E}^2 \quad \rightarrow \quad \tan\theta = -1/[1 + (\mathcal{E}/M_{\rm o}c^2)]. \tag{3a}$$

Substitution into the preceding equations for \mathcal{E}' and V then yields

$$\mathcal{E}' = \mathcal{E}/[1 + (\mathcal{E}/M_{o}c^{2})], \tag{3b}$$

$$V = (\mathcal{E}/M_{o}c)\sqrt{2 + 2(\mathcal{E}/M_{o}c^{2}) + (\mathcal{E}/M_{o}c^{2})^{2}} / [1 + (\mathcal{E}/M_{o}c^{2}) + (\mathcal{E}/M_{o}c^{2})^{2}].$$
(3c)

2

b) Non-relativistic treatment:

Energy conservation:	$\mathcal{E} = \mathcal{E}' + \frac{1}{2}M_0 V^2$	(4a)
Momentum conservation along <i>x</i> :	$\mathcal{E}/c = M_{\rm o}V\cos\theta$	(4b)
Momentum conservation along <i>y</i> :	$(\mathcal{E}'/c) + M_{\rm o}V\sin\theta = 0$	(4c)

These three equations must now be solved for the three unknowns, \mathcal{E}' , V, and θ . Dividing Eq. (4c) by Eq.(4b) yields: $\tan \theta = -\mathcal{E}'/\mathcal{E}$. Substituting for \mathcal{E} and \mathcal{E}' from Eqs.(4b) and (4c) into Eq.(4a), then solving for V, yields $V=2c(\cos\theta+\sin\theta)$. Placing this expression for V into Eq.(4b) and solving for $\tan \theta$, we find

$$\mathcal{E}/c = 2M_{o}c(\cos\theta + \sin\theta)\cos\theta = 2M_{o}c(1 + \tan\theta)\cos^{2}\theta = 2M_{o}c(1 + \tan\theta)/(1 + \tan^{2}\theta) \rightarrow \tan\theta = (M_{o}c^{2}/\mathcal{E})[1 - \sqrt{1 + 2(\mathcal{E}/M_{o}c^{2}) - (\mathcal{E}/M_{o}c^{2})^{2}}], \quad (5a)$$

$$\mathcal{E}' = -\mathcal{E} \tan \theta. \tag{5b}$$

$$V = 2c(1 + \tan\theta)/\sqrt{1 + \tan^2\theta}.$$
 (5c)

Problem 2) a) Snell's law: $k_x^{(i)} = k_x^{(t)}$. Below, both $k_x^{(i)}$ and $k_x^{(t)}$ will be written as k_x .

Dispersion relation in free space: $\mathbf{k}^{(i)^2} = k_x^{(i)^2} + k_z^{(i)^2} = (\omega/c)^2$; therefore, $k_z^{(i)} = \pm \sqrt{(\omega/c)^2 - k_x^2}$. Note that, in general, the square root will yield a complex number. Either the plus sign or the minus sign (but not both) should be used for the square root.

Dispersion relation in material medium: $\mathbf{k}^{(t)2} = k_x^{(t)2} + k_z^{(t)2} = (\omega/c)^2 \mu(\omega)\varepsilon(\omega)$. Since $k_x^{(i)} = k_x^{(t)} = k_x$ and $\mu(\omega) = 1$, we will have $k_z^{(t)} = \pm \sqrt{(\omega/c)^2 \varepsilon(\omega) - k_x^2}$. As before, the square root will, in general, yield a complex number. Either the plus sign or the minus sign (but not both) should be used.

b) Maxwell's first equation: $\mathbf{k}^{(i)} \cdot \mathbf{E}_0^{(i)} = 0 \rightarrow k_x^{(i)} E_{x0}^{(i)} + k_z^{(i)} E_{z0}^{(i)} = 0 \rightarrow E_{z0}^{(i)} = -k_x E_{x0}^{(i)} / k_z^{(i)}$. transmitted beam: $\mathbf{k}^{(t)} \cdot \mathbf{E}_0^{(t)} = 0 \rightarrow E_{z0}^{(t)} = -k_x E_{x0}^{(t)} / k_z^{(t)}$.

Maxwell's third equation; incident beam: $\mathbf{k}^{(i)} \times \mathbf{E}_{o}^{(i)} = \mu_{o} \omega \mathbf{H}_{o}^{(i)} \rightarrow \mathbf{H}_{xo}^{(i)} = -k_{z}^{(i)} \mathbf{E}_{yo}^{(i)} / (\mu_{o} \omega);$

$$H_{yo}^{(i)} = [k_z^{(i)} E_{xo}^{(i)} - k_x E_{zo}^{(i)}] / (\mu_0 \omega) = \varepsilon_0 \omega E_{xo}^{(i)} / k_z^{(i)}; \qquad H_{zo}^{(i)} = k_x E_{yo}^{(i)} / (\mu_0 \omega).$$

transmitted beam:
$$\mathbf{k}^{(t)} \times \mathbf{E}_{o}^{(t)} = \mu_{o} \mu(\omega) \omega \mathbf{H}_{o}^{(t)} \rightarrow \mathbf{H}_{xo}^{(t)} = -k_{z}^{(t)} \mathbf{E}_{yo}^{(t)} / (\mu_{o}\omega)$$

 $\mathbf{H}_{yo}^{(t)} = [k_{z}^{(t)} \mathbf{E}_{xo}^{(t)} - k_{x} \mathbf{E}_{zo}^{(t)}] / (\mu_{o}\omega) = \varepsilon_{o} \varepsilon \omega \mathbf{E}_{xo}^{(t)} / k_{z}^{(t)}; \quad \mathbf{H}_{zo}^{(t)} = k_{x} \mathbf{E}_{yo}^{(t)} / (\mu_{o}\omega).$

c) Continuity equations for the tangential *E*- and *H*-fields at the z=0 interface:

$$p\text{-polarization:} \begin{cases} E_{xo}^{(i)} = E_{xo}^{(t)} \\ H_{yo}^{(i)} = H_{yo}^{(t)} \rightarrow \varepsilon_{0} \omega E_{xo}^{(i)} / k_{z}^{(i)} = \varepsilon_{0} \varepsilon \omega E_{xo}^{(t)} / k_{z}^{(t)} \rightarrow k_{z}^{(t)} = \varepsilon(\omega) k_{z}^{(i)}. \end{cases}$$

$$s\text{-polarization:} \begin{cases} E_{yo}^{(i)} = E_{yo}^{(t)} \\ H_{xo}^{(i)} = H_{xo}^{(t)} \rightarrow k_{z}^{(t)} = k_{z}^{(i)}. \end{cases}$$

d) For the case of *p*-polarization, satisfying the boundary conditions *without* a reflected wave requires that $k_z^{(t)} = \varepsilon(\omega) k_z^{(i)}$. Substituting in this equation the expressions for $k_z^{(i)}$ and $k_z^{(t)}$ obtained in part (a), we find

$$(\omega/c)^2 \varepsilon(\omega) - k_x^2 = \varepsilon^2(\omega) [(\omega/c)^2 - k_x^2] \rightarrow k_x = \pm (\omega/c) \sqrt{\varepsilon(\omega)/[1 + \varepsilon(\omega)]}.$$

For the case of *s*-polarization, the boundary conditions in the absence of a reflected wave will be satisfied only when $k_z^{(i)} = k_z^{(t)}$, which is *impossible* so long as $\varepsilon(\omega) \neq 1$.

- e) **Case i**: $\varepsilon' > 0$, $\varepsilon'' = 0$. Here $\varepsilon' = n^2$, where *n* is the real-valued, positive refractive index of the material medium. When the reflection coefficient for *p*-polarized light vanishes, we will have $k_x = \pm (\omega/c)\sqrt{n^2/(1+n^2)} = \pm (\omega/c)\sin\theta_B$ where $\theta_B = \tan^{-1}n$ is the Brewster angle. Substituting for k_x in the expressions for $k_z^{(i)}$ and $k_z^{(t)}$, we find $k_z^{(i)} = -(\omega/c)\cos\theta_B$ and $k_z^{(t)} = -(n^2\omega/c)\cos\theta_B$. Both the incident and transmitted plane-waves are thus homogeneous; they propagate downward, along the negative *z*-axis, and satisfy the condition $k_z^{(t)} = \varepsilon(\omega)k_z^{(i)}$ obtained in part (c) for *p*-polarized light.
- **Case ii**: $\varepsilon' < -1$, $\varepsilon'' = 0$. When the reflection coefficient for *p*-polarized light vanishes, we will have $k_x = \pm (\omega/c) \sqrt{|\varepsilon'|/(|\varepsilon'|-1)}$, which is a real-valued number with a magnitude greater

than ω/c . Substitution for k_x in the expressions for $k_z^{(i)}$ and $k_z^{(t)}$ yields $k_z^{(i)} = i(\omega/c)/\sqrt{|\varepsilon'|-1}$ and $k_z^{(t)} = -i(\omega/c)|\varepsilon'|/\sqrt{|\varepsilon'|-1}$. Both the incident and transmitted waves are thus *evanescent*, with real-valued k_x and imaginary k_z ; they attenuate away from the interface along the $\pm z$ -axis, and satisfy the required condition $k_z^{(t)} = \varepsilon(\omega)k_z^{(i)}$ obtained for *p*-polarized light in part (c). The time-averaged Poynting vector $\langle S \rangle = \frac{1}{2}$ Real($E \times H^*$) can be readily calculated from the (E_x, E_z, H_y) fields given in part (b). The energy is seen to flow along k_x in the free space, and along $-k_x$ inside the medium. On both sides of the interface, the time-averaged energy flux along the *z*-axis is zero. This excited surface-wave, residing partly in the free space and partly in the material medium, is known as a *surface plasmon polariton*.

Case iii: $\varepsilon' < 0$, $\varepsilon'' > 0$. In this case $k_x = \pm (\omega/c) \sqrt{(\varepsilon' + i\varepsilon'')/(1 + \varepsilon' + i\varepsilon'')}}$ is complex-valued. Substitution for k_x in the expressions for $k_z^{(i)}$ and $k_z^{(t)}$ yields $k_z^{(i)} = (\omega/c)(1 + \varepsilon' + i\varepsilon'')^{-\frac{1}{2}}$ and $k_z^{(t)} = (\omega/c)(\varepsilon' + i\varepsilon'')(1 + \varepsilon' + i\varepsilon'')^{-\frac{1}{2}}$. The complex square root $(1 + \varepsilon' + i\varepsilon'')^{-\frac{1}{2}}$ is chosen to give $k_z^{(i)}$ a *positive* imaginary part. Note that our choice of signs for $k_z^{(i)}$ and $k_z^{(t)}$ satisfies the required condition $k_z^{(t)} = \varepsilon(\omega)k_z^{(i)}$ obtained in part (c). We must prove that the imaginary parts of $k_z^{(i)}$ and $k_z^{(t)}$ always have opposite signs. To this end, note that $(1 + \varepsilon)^{-\frac{1}{2}} + \varepsilon(1 + \varepsilon)^{-\frac{1}{2}} = (1 + \varepsilon)^{\frac{1}{2}}$; therefore, $\varepsilon(1 + \varepsilon)^{-\frac{1}{2}} = (1 + \varepsilon)^{\frac{1}{2}} - (1 + \varepsilon)^{-\frac{1}{2}}$. From the complex-plane diagram below it must be clear that, for *any* complex number α , the imaginary parts of $\alpha - (1/\alpha)$ and $(1/\alpha)$ always have opposite signs, which completes

the proof. The *evanescent* plane-wave in the free space region decays exponentially along the imaginary part of $k_x^{(i)}\hat{x} + k_z^{(i)}\hat{z}$, which points away from the interface. The *inhomogeneous* plane-wave in the material medium also decays exponentially away from the interface, this one along the imaginary part of $k_x^{(i)}\hat{x} + k_z^{(i)}\hat{z}$.

Typical metals at optical frequencies have large negative values of ε' in addition to small positive values of ε'' . For these, the *surface plasmon polariton* wave will have a k_x value slightly greater than unity (in magnitude), with a small imaginary component. The evanescent wave in the free space decays rather slowly along the *z*-axis, whereas the inhomogeneous

wave in the metal decays quite rapidly away from the interface. The plasmonic wave is thus confined to a thin layer at the surface of the metallic medium. The time-averaged Poynting vector $\langle S \rangle = \frac{1}{2} \operatorname{Real}(E \times H^*)$ can be readily calculated from the (E_x, E_z, H_y) fields given in part (b). The horizontal energy flux, $\langle S_x \rangle$, is seen to be along $\operatorname{Real}(k_x)$ in the free space, and along $\operatorname{Real}(-k_x)$ inside the medium. On both sides of the interface, vertical energy flux, $\langle S_z \rangle$, is downward, i.e., points along the negative *z*axis. Such plasmonic waves are generally long-range, because ε'' is fairly small and the losses are confined to an exceedingly thin layer at the surface of the metallic medium.

Case iv: $\varepsilon' > 0$, $\varepsilon'' > 0$. This case is similar to case (iii), with the following exceptions: The magnitude of k_x is generally *less* than unity, with an imaginary part that may be large or

small, depending on the relative values of ε' and ε'' . For a low-loss medium, where ε'' is fairly small, the exponential decay of the wave inside the medium (away from the interface) is rather slow, resulting in a large penetration depth. The horizontal energy flux, $\langle S_x \rangle$, is in the direction of Real(k_x), both in the free space region and inside the material medium. The vertical energy flux, $\langle S_z \rangle$, always pointing along the negative *z*-axis, is large, irrespective of whether ε'' is large or small. The wave is thus very different from a *surface plasmon polariton*, despite similarities in their mathematical structure. When integrated over the penetration depth, the lost energy will be substantial, even for small values of ε'' . Therefore, a *p*-polarized wave-packet comprising an evanescent plane-wave in the free space region and an inhomogeneous plane-wave in a medium having $\varepsilon' > 0$, $\varepsilon'' > 0$, cannot behave similarly to a long-range surface wave; too much energy is dissipated within its penetration depth, and not enough energy is transported parallel to the surface of the medium.

Problem 3) a) Using the dispersion relation, $k^2 = k_x^2 + k_z^2 = (\omega/c)^2 \mu(\omega) \varepsilon(\omega)$, and the fact that the *x*-component of *k* is given by $k_x = (\omega/c)n(\omega)\sin\theta$, we write

$$k_z = \sqrt{(\omega/c)^2 n(\omega)^2 - k_x^2} = (\omega/c) n(\omega) \cos\theta.$$
(1)

Maxwell's 1st equation: $k_1 \cdot E_1 = 0 \rightarrow k_x E_{x1} + k_z E_{z1} = 0 \rightarrow E_{z1} = -k_x E_{x1}/k_z \rightarrow E_{z1} = -(\tan\theta) E_{x1}$.

Similarly,
$$k_2 \cdot E_2 = 0 \rightarrow E_{z2} = (\tan \theta) E_{x2}$$
. (2)

Maxwell's 3rd equation: $\mathbf{k}_1 \times \mathbf{E}_1 = \mu_0 \mu(\omega) \omega \mathbf{H}_1 \rightarrow \mathbf{H}_{x1} = -k_z E_{y1}/(\mu_0 \omega) \rightarrow \mathbf{H}_{x1} = -n(\omega) E_{y1} \cos\theta/Z_0$;

$$H_{y1} = (k_z E_{x1} - k_x E_{z1})/(\mu_0 \omega) = n(\omega) E_{x1}/(Z_0 \cos \theta); \quad H_{z1} = k_x E_{y1}/(\mu_0 \omega) = n(\omega) E_{y1} \sin \theta / Z_0.$$
(3a)

Similarly, $H_{x2} = n(\omega)E_{y2}\cos\theta/Z_0$; $H_{y2} = -n(\omega)E_{x2}/(Z_0\cos\theta)$; $H_{z2} = n(\omega)E_{y2}\sin\theta/Z_0$. (3b)

b) Setting $E_{x2} = E_{x1}$ and $E_{y2} = E_{y1}$ for an even mode, the superposition of the two plane-waves produces the following fields throughout the waveguide:

$$E(\mathbf{r},t) = \operatorname{Real} \left\{ E_{1} \exp[i(\mathbf{k}_{1} \cdot \mathbf{r} - \omega t)] + E_{2} \exp[i(\mathbf{k}_{2} \cdot \mathbf{r} - \omega t)] \right\}$$

$$= \operatorname{Real} \left\{ [E_{1} \exp(ik_{z}z) + E_{2} \exp(-ik_{z}z)] \exp[i(k_{x}x - \omega t)] \right\}$$

$$= \operatorname{Real} \left\{ \left\{ E_{x1} [\exp(ik_{z}z) + \exp(-ik_{z}z)] \hat{\mathbf{x}} + E_{y1} [\exp(ik_{z}z) + \exp(-ik_{z}z)] \hat{\mathbf{y}} - \tan \theta E_{x1} [\exp(ik_{z}z) - \exp(-ik_{z}z)] \hat{\mathbf{z}} \right\} \exp[i(k_{x}x - \omega t)] \right\}$$

$$= 2E_{x1} \cos(k_{z}z) \cos(k_{x}x - \omega t) \hat{\mathbf{x}} + 2E_{y1} \cos(k_{z}z) \cos(k_{x}x - \omega t) \hat{\mathbf{y}} + 2\tan \theta E_{x1} \sin(k_{z}z) \sin(k_{x}x - \omega t) \hat{\mathbf{z}}.$$

$$(4a)$$

$$H(\mathbf{r},t) = \operatorname{Real} \left\{ H_{1} \exp[i(\mathbf{k}_{1} \cdot \mathbf{r} - \omega t)] + H_{2} \exp[i(\mathbf{k}_{2} \cdot \mathbf{r} - \omega t)] \right\}$$

$$= 2Z_{0}^{-1} n(\omega) [E_{y1} \cos \theta \sin(k_{z}z) \sin(k_{x}x - \omega t) \hat{\mathbf{x}} - (E_{x1}/\cos \theta) \sin(k_{z}z) \sin(k_{x}x - \omega t) \hat{\mathbf{y}}$$

$$+E_{y1}\sin\theta\cos(k_z z)\cos(k_x z - \omega t)\hat{z}].$$
(4b)

c) At the surface of the conductor, there cannot be any tangential *E*- or perpendicular *B*-fields, which means that $E_x = E_y = H_z = 0$ at $z = \pm d/2$. This is possible only when $\cos(\pm \frac{1}{2}k_z d) = 0$, that is,

$$\frac{1}{2}(\omega d/c)n(\omega)\cos\theta = (m+\frac{1}{2})\pi \rightarrow \cos\theta_m = (m+\frac{1}{2})\lambda_0/[n(\omega)d],$$
(5)

where the vacuum wavelength, $\lambda_0 = 2\pi c/\omega$, has been used. The mode can exist when $\cos\theta < 1$. The smallest possible value of the integer *m* being zero, it is necessary to have $d > \frac{1}{2}\lambda_0/n(\omega)$ to ensure the existence of at least one even mode. The even mode is said to be "cut-off" when the slab thickness *d* happens to be below $\frac{1}{2}\lambda_0/n(\omega)$. For single mode operation, *d* must be in the following range:

$$\frac{1}{2\lambda_0}/n(\omega) < d < \frac{3}{2\lambda_0}/n(\omega).$$
 (6)

With regard to the polarization state of the guided mode, two possibilities exist:

- i) *p*-polarized mode (also called transverse magnetic, TM, mode): $E_{x1} \neq 0$, $E_{y1} = 0$.
- ii) *s*-polarized mode (also called transverse electric, TE, mode): $E_{x1}=0$, $E_{y1}\neq 0$.

In the case of *even* modes currently under consideration, the preceding statements with regard to cut-off and single-mode operation apply to *both* TE and TM modes.

d) According to Maxwell's 1st equation, $\nabla \cdot D = \rho_{\text{free}}$, the surface charge density is equal to the perpendicular *D*-field, $\varepsilon_0 \varepsilon E_{\perp}$, at the surface of a perfect conductor. We thus have:

*m*th *p*-polarized even mode:

$$\sigma_s(x,z=d/2,t) = -\varepsilon_0 \varepsilon E_z(x,z=d/2,t) = 2(-1)^{m+1} \varepsilon_0 n^2(\omega) \tan \theta_m E_{x1} \sin(k_x^{(m)}x-\omega t).$$
(7a)

mth s-polarized even mode:

$$\sigma_s(x, z=d/2, t)=0. \tag{7b}$$

Also, according to Maxwell's 2^{nd} equation, $\nabla \times H = J_{\text{free}} + \partial D / \partial t$, the surface current density of a perfect conductor is equal but perpendicular to the tangential magnetic field, H_{\parallel} . Therefore,

*m*th *p*-polarized even mode:

$$\boldsymbol{J}_{s}(x,z=d/2,t) = H_{y}(x,z=d/2,t)\hat{\boldsymbol{x}} = 2(-1)^{m+1}n(\omega)(E_{x1}/Z_{o}\cos\theta_{m})\sin(k_{x}^{(m)}x-\omega t)\hat{\boldsymbol{x}}.$$
 (8a)

mth s-polarized even mode:

$$\mathbf{J}_{s}(x, z = d/2, t) = -H_{x}(x, z = d/2, t)\hat{\mathbf{y}} = 2(-1)^{m+1}n(\omega)(E_{y1}/Z_{o})\cos\theta_{m}\sin(k_{x}^{(m)}x - \omega t)\hat{\mathbf{y}}.$$
 (8b)

It may be readily verified that the above distributions satisfy the charge-current continuity equation, $\nabla \cdot J_s + \partial \sigma_s / \partial t = 0$.

e) Setting $E_{x2} = -E_{x1}$ and $E_{y2} = -E_{y1}$ for an odd mode, the superposition of the two plane-waves produces the following fields throughout the waveguide:

$$E(\mathbf{r},t) = \operatorname{Real} \{E_{1} \exp[i(\mathbf{k}_{1} \cdot \mathbf{r} - \omega t)] + E_{2} \exp[i(\mathbf{k}_{2} \cdot \mathbf{r} - \omega t)]\}$$

$$= \operatorname{Real} \{E_{1} \exp(ik_{z}z) - \exp(-ik_{z}z)]\hat{\mathbf{x}} + E_{y1} [\exp(ik_{z}z) - \exp(-ik_{z}z)]\hat{\mathbf{y}}$$

$$-\tan \theta E_{x1} [\exp(ik_{z}z) + \exp(-ik_{z}z)]\hat{\mathbf{z}}\} \exp[i(k_{x}x - \omega t)]\}$$

$$= -2 [E_{x1} \sin(k_{z}z) \sin(k_{x}x - \omega t)\hat{\mathbf{x}} + E_{y1} \sin(k_{z}z) \sin(k_{x}x - \omega t)\hat{\mathbf{y}} + \tan \theta E_{x1} \cos(k_{z}z) \cos(k_{x}x - \omega t)\hat{\mathbf{z}}].$$
(9a)
$$H(\mathbf{r},t) = \operatorname{Real} \{H_{1} \exp[i(\mathbf{k}_{1} \cdot \mathbf{r} - \omega t)] + H_{2} \exp[i(\mathbf{k}_{2} \cdot \mathbf{r} - \omega t)]\}$$

$$=-2Z_{o}^{-1}n(\omega)[E_{y1}\cos\theta\cos(k_{z}z)\cos(k_{x}z-\omega t)\hat{\boldsymbol{x}}-(E_{x1}/\cos\theta)\cos(k_{z}z)\cos(k_{x}z-\omega t)\hat{\boldsymbol{y}} + E_{y1}\sin\theta\sin(k_{z}z)\sin(k_{x}z-\omega t)\hat{\boldsymbol{z}}].$$
(9b)

At the conductors' surfaces, $z = \pm d/2$, where $E_x = E_y = H_z = 0$, we must have $\sin(\pm \frac{1}{2}k_z d) = 0$, i.e.,

$$\frac{1}{2}(\omega d/c)n(\omega)\cos\theta = m\pi \rightarrow \cos\theta_m = m\lambda_0/[n(\omega)d].$$
 (10)

In this case the lowest-order mode, corresponding to m=0, obtains when $\theta_m=90^\circ$. However, we now have $k_x = (\omega/c)n(\omega)$ and $k_z=0$. Under these circumstances, in accordance with Eqs.(9a) and (9b), E_x, E_y, H_x , and H_z will identically vanish throughout the slab. The only surviving fields are E_z and H_y , which go to infinity unless one recognizes that, by allowing E_x to approach zero when $\theta \rightarrow 90^\circ$, E_z and H_y could attain finite values, namely,

$$\boldsymbol{E}(\boldsymbol{r},t) = E_z \cos(k_x^{(0)} x - \omega t) \hat{\boldsymbol{z}}; \qquad (m=0), \qquad (11a)$$

$$\boldsymbol{H}(\boldsymbol{r},t) = -n(\omega)(E_z/Z_0)\cos(k_x^{(0)}x - \omega t)\hat{\boldsymbol{y}}; \qquad (m=0).$$
(11b)

(0)

This *p*-polarized (TM) mode always exists, no matter how thin the slab may be. Taking note of the fact that $\cos\theta_m \le 1$ for any value of *m*, the condition for *p*-polarized *single-mode* operation in the m = 0 guided mode is $d < \lambda_0/n(\omega)$.

For odd modes that are *s*-polarized (TE), the first possibility for propagation is m=1, in which case single-mode operation occurs when $\lambda_0/n(\omega) \le d \le 2\lambda_0/n(\omega)$. The cut-off for odd TE modes occurs below $d = \lambda_0/n(\omega)$.

At the surface of the upper conductor which is in contact with the dielectric slab, surface charge and current densities for odd modes are found to be:

 m^{th} odd *p*-polarized mode ($m \neq 0$):

$$\sigma_s(x, z=d/2, t) = -\varepsilon_0 \varepsilon E_z(x, z=d/2, t) = 2(-1)^m \varepsilon_0 n^2(\omega) \tan \theta_m E_{x1} \cos(k_x^{(m)} x - \omega t),$$
(12a)

$$\boldsymbol{J}_{s}(x, z=d/2, t) = H_{y}(x, z=d/2, t) \hat{\boldsymbol{x}} = 2(-1)^{m} n(\omega) (E_{x1}/Z_{0} \cos \theta_{m}) \cos(k_{x}^{(m)} x - \omega t) \hat{\boldsymbol{x}}.$$
 (12b)

 m^{th} odd *s*-polarized mode ($m \neq 0$):

$$\sigma_s(x, z=d/2, t)=0,$$
 (13a)

$$\mathbf{J}_{s}(x, z=d/2, t) = -H_{x}(x, z=d/2, t)\hat{\mathbf{y}} = 2(-1)^{m}n(\omega)(E_{y1}/Z_{o})\cos\theta_{m}\cos(k_{x}^{(m)}x-\omega t)\hat{\mathbf{y}}.$$
 (13b)

Once again, it is easy to verify the satisfaction of the charge-current continuity equation for the above distributions.