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Opti 501 Final Exam Solutions 6/22/2010 
 
Problem 1) Let the mirror acquire a velocity V along a direction that makes an angle θ with the 
x-axis within the xy-plane. Denoting by E ′ the energy of the light pulse after reflection, 
conservation of energy and momentum before and after reflection yields the following equations. 

a) Relativistic treatment: 

Energy conservation: E + Moc2 = E ′+ Moc2/√ 1−V 2/c2 (1a) 

Momentum conservation along x: E /c = MoVcosθ /√ 1−V 2/c2 (1b) 

Momentum conservation along y: (E ′/c) + MoV sinθ /√ 1−V 2/c2 = 0 (1c) 

These three equations must now be solved for the three unknowns, E ′,V, and θ. Dividing Eq.(1c) 
by Eq.(1b) yields: tanθ = −E ′/E . Substituting E ′= −E  tanθ  in Eq.(1a) and solving for V, we find 

 √ 1−V 2/c2 =Moc2/[Moc2+ (1+ tanθ )E ], (2a) 

 V = c√ 2Moc2(1+ tanθ )E + (1+ tanθ )2E 2/[Moc2+ (1+ tanθ )E ]. (2b) 

The above expressions for V and √ 1−V 2/c2 may now be placed into Eq.(1b) to yield 

 E = cosθ√ 2Moc2(1+ tanθ )E + (1+ tanθ )2E 2       →      tanθ = −1/[1+ (E /Moc2)]. (3a) 

Substitution into the preceding equations for E ′ and V then yields 

 E ′= E /[1+ (E /Moc2)], (3b) 

 V = (E /Moc)√ 2 + 2(E /Moc2) + (E /Moc2)2/[1+ (E /Moc2)+ (E /Moc2)2]. (3c) 

b) Non-relativistic treatment: 

Energy conservation: E = E ′+ ½MoV 2 (4a) 

Momentum conservation along x: E /c = MoVcosθ (4b) 

Momentum conservation along y: (E ′/c) + MoV sinθ = 0 (4c) 

These three equations must now be solved for the three unknowns, E ′,V, and θ. Dividing Eq.(4c) 
by Eq.(4b) yields: tanθ = −E ′/E . Substituting for E  and E ′ from Eqs.(4b) and (4c) into Eq.(4a), 
then solving for V, yields V = 2c(cosθ + sinθ ). Placing this expression for V into Eq.(4b) and 
solving for tanθ , we find 

 E /c = 2Moc(cosθ + sinθ )cosθ = 2Moc(1+ tanθ )cos2θ = 2Moc(1+ tanθ )/(1+ tan2θ ) → 

 tanθ = (Moc2/E )[1−√ 1 +2(E /Moc2) − (E /Moc2)2],  (5a) 

 E ′= −E tanθ , (5b) 

 V = 2c(1+ tanθ )/√ 1+ tan2θ . (5c) 
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Problem 2)    a) Snell’s law: kx
(i) =kx

(t). Below, both kx
(i) and kx

(t) will be written as kx.  

Dispersion relation in free space: k(i)2 = kx
(i)2 + kz

(i)2 = (ω/c)2; therefore, kz
(i) = ±√ (ω /c)2 −kx

2. Note 
that, in general, the square root will yield a complex number. Either the plus sign or the minus 
sign (but not both) should be used for the square root. 

Dispersion relation in material medium: k(t)2 = kx
(t)2 + kz

(t)2 = (ω/c)2μ(ω)ε (ω). Since kx
(i) =kx

(t) = kx  
and μ(ω) = 1, we will have kz

(t) = ±√ (ω /c)2ε (ω) −kx
2. As before, the square root will, in general, 

yield a complex number. Either the plus sign or the minus sign (but not both) should be used. 

b) Maxwell’s first equation: k(i) ⋅Eo
(i) = 0 → kx

(i)Exo
(i) + kz

(i)Ezo
(i) = 0 → Ezo

(i) = −kxExo
(i)/kz

(i). 

 transmitted beam: k(t) ⋅Eo
(t) = 0 → Ezo

(t) = −kxExo
(t)/kz

(t).  

 Maxwell’s third equation; incident beam: k(i)×Eo
(i) = μoω Ho

(i) → Hxo
(i) = − kz

(i)Eyo
(i)/(μoω); 

 Hyo
(i) = [kz

(i)Exo
(i)− kxEzo

(i)]/(μoω) =εoω Exo
(i) /kz

(i);        Hzo
(i) = kxEyo

(i)/(μoω). 

 transmitted beam: k(t)×Eo
(t) = μoμ(ω)ω Ho

(t)  → Hxo
(t) = − kz

(t)Eyo
(t)/(μoω); 

 Hyo
(t) = [kz

(t)Exo
(t)− kxEzo

(t)]/(μoω) =εoε ω Exo
(t) /kz

(t);     Hzo
(t) = kxEyo

(t)/(μoω). 

c) Continuity equations for the tangential E- and H-fields at the z = 0 interface: 

 p-polarization: Exo
(i) = Exo

(t) 

 Hyo
(i) = Hyo

(t) →  εoω Exo
(i) /kz

(i) =εoε ω Exo
(t)/kz

(t)  →  kz
(t) = ε (ω)kz

(i). 

 s-polarization : Eyo
(i) = Eyo

(t) 

 Hxo
(i) = Hxo

(t)   →  kz
(t) = kz

(i). 

d) For the case of p-polarization, satisfying the boundary conditions without a reflected wave 
requires that kz

(t) = ε (ω)kz
(i). Substituting in this equation the expressions for kz

(i) and kz
(t) 

obtained in part (a), we find 

 (ω /c)2ε (ω) −kx
2 = ε 2(ω)[(ω /c)2 − kx

2]  →  kx = ±(ω /c)√ ε (ω)/[1+ε (ω)]. 
 

For the case of s-polarization, the boundary conditions in the absence of a reflected wave 
will be satisfied only when kz

(i) = kz
(t), which is impossible so long as ε (ω) ≠ 1. 

e) Case i: ε ′ > 0, ε ″= 0. Here ε ′= n2, where n is the real-valued, positive refractive index of the 
material medium. When the reflection coefficient for p-polarized light vanishes, we 
will have kx = ±(ω /c)√ n2/(1+n2) = ±(ω /c)sinθB where θB = tan−1n is the Brewster 
angle. Substituting for kx in the expressions for kz

(i) and kz
(t), we find kz

(i) = −(ω /c)cosθB 
and kz

(t) = −(n2ω /c)cosθB. Both the incident and transmitted plane-waves are thus 
homogeneous; they propagate downward, along the negative z-axis, and satisfy the 
condition kz

(t) = ε (ω)kz
(i) obtained in part (c) for p-polarized light. 

Case ii: ε ′ < −1, ε ″= 0. When the reflection coefficient for p-polarized light vanishes, we will 
have kx = ±(ω /c)√ |ε ′| / (|ε ′| −1), which is a real-valued number with a magnitude greater 
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than ω /c. Substitution for kx in the expressions for kz
(i) and kz

(t) yields 
kz

(i) = i(ω /c)/√ |ε ′| −1 and kz
(t) = − i(ω /c)|ε ′| /√ |ε ′| −1. Both the incident and transmitted 

waves are thus evanescent, with real-valued kx and imaginary kz; they attenuate away 
from the interface along the ±z-axis, and satisfy the required condition kz

(t) = ε (ω)kz
(i) 

obtained for p-polarized light in part (c). The time-averaged Poynting vector 
<S> = ½Real(E×H*) can be readily calculated from the (Ex, Ez, Hy) fields given in part 
(b). The energy is seen to flow along kx in the free space, and along –kx inside the 
medium. On both sides of the interface, the time-averaged energy flux along the z-axis 
is zero. This excited surface-wave, residing partly in the free space and partly in the 
material medium, is known as a surface plasmon polariton. 

Case iii: ε ′ < 0, ε ″> 0. In this case kx = ±(ω /c)√ (ε ′+iε ″)/(1+ε ′+iε ″) is complex-valued. 
Substitution for kx in the expressions for kz

(i) and kz
(t) yields kz

(i) = (ω /c)(1+ε ′+iε ″)−½ 
and kz

(t) = (ω /c)(ε ′+ iε ″)(1+ε ′+iε ″)−½. The complex square root (1+ε ′+iε ″)−½ is 
chosen to give kz

(i) a positive imaginary part. Note that our choice of signs for kz
(i) and 

kz
(t) satisfies the required condition kz

(t) = ε (ω)kz
(i) obtained in part (c). We must prove 

that the imaginary parts of kz
(i) and kz

(t) always have opposite signs. To this end, note 
that (1+ε )−½ +ε (1+ε )−½ = (1+ε )½; therefore, ε (1+ε )−½ = (1+ε )½ − (1+ε )−½. From the 
complex-plane diagram below it must be clear that, for any complex number α , the 
imaginary parts of α −(1/α) and (1/α) always have opposite signs, which completes 
the proof. The evanescent plane-wave in the 
free space region decays exponentially along 
the imaginary part of kx

(i)x^ + kz
(i)z^ , which points 

away from the interface. The inhomogeneous 
plane-wave in the material medium also decays 
exponentially away from the interface, this one 
along the imaginary part of kx

(t)x^ + kz
(t)z^ . 

Typical metals at optical frequencies have 
large negative values of ε ′ in addition to small 
positive values of ε ″. For these, the surface 
plasmon polariton wave will have a kx value 
slightly greater than unity (in magnitude), with 
a small imaginary component. The evanescent 
wave in the free space decays rather slowly 
along the z-axis, whereas the inhomogeneous 
wave in the metal decays quite rapidly away from the interface. The plasmonic wave is 
thus confined to a thin layer at the surface of the metallic medium. The time-averaged 
Poynting vector <S> = ½Real(E×H*) can be readily calculated from the (Ex, Ez, Hy) 
fields given in part (b). The horizontal energy flux, <Sx >, is seen to be along Real(kx) 
in the free space, and along Real(–kx) inside the medium. On both sides of the 
interface, vertical energy flux, <Sz >, is downward, i.e., points along the negative z-
axis. Such plasmonic waves are generally long-range, because ε ″ is fairly small and the 
losses are confined to an exceedingly thin layer at the surface of the metallic medium. 

Case iv: ε ′ > 0, ε ″> 0. This case is similar to case (iii), with the following exceptions: The 
magnitude of kx is generally less than unity, with an imaginary part that may be large or 

α 

1/α 

−1/α 

α −(1/α)

Real

Imaginary 
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small, depending on the relative values of ε ′ and ε ″. For a low-loss medium, where ε″ 
is fairly small, the exponential decay of the wave inside the medium (away from the 
interface) is rather slow, resulting in a large penetration depth. The horizontal energy 
flux, <Sx >, is in the direction of Real(kx), both in the free space region and inside the 
material medium. The vertical energy flux, <Sz >, always pointing along the negative z-
axis, is large, irrespective of whether ε ″ is large or small. The wave is thus very 
different from a surface plasmon polariton, despite similarities in their mathematical 
structure. When integrated over the penetration depth, the lost energy will be 
substantial, even for small values of ε ″. Therefore, a p-polarized wave-packet 
comprising an evanescent plane-wave in the free space region and an inhomogeneous 
plane-wave in a medium having ε ′ > 0, ε ″> 0, cannot behave similarly to a long-range 
surface wave; too much energy is dissipated within its penetration depth, and not 
enough energy is transported parallel to the surface of the medium. 

 
Problem 3) a) Using the dispersion relation, k2 = kx

2 + kz
2 = (ω/c)2μ(ω)ε (ω), and the fact that the 

x-component of k is given by kx= (ω/c)n(ω)sinθ , we write 

 kz =√ (ω/c)2n(ω)2− kx
2 = (ω/c)n(ω)cosθ. (1) 

Maxwell’s 1st equation: k1⋅E1= 0 → kxEx1 + kzEz1 = 0 → Ez1= −kxEx1/kz  → Ez1 = −(tanθ )Ex1. 

 Similarly, k2⋅E2= 0 → Ez2 = (tanθ )Ex2. (2) 

Maxwell’s 3rd equation: k1×E1 = μoμ(ω)ω H1 → Hx1 = − kzEy1/(μoω)  → Hx1 = − n(ω)Ey1cosθ /Zo; 

 Hy1 = (kzEx1− kxEz1)/(μoω) = n(ω)Ex1/(Zocosθ );    Hz1 = kxEy1/(μoω) = n(ω)Ey1sinθ /Zo. (3a) 

Similarly, Hx2 = n(ω)Ey2cosθ /Zo; Hy2 = − n(ω)Ex2/(Zocosθ ); Hz2 = n(ω)Ey2sinθ /Zo. (3b) 

b) Setting Ex2 = Ex1 and Ey2= Ey1 for an even mode, the superposition of the two plane-waves 
produces the following fields throughout the waveguide: 

 E(r,t) = Real{E1exp[i(k1 ⋅r −ω t)]+ E2exp[i(k2⋅r−ω t)]} 
 = Real{[E1exp(ikzz) + E2exp(− ikzz)]exp[i(kxx −ω t)]} 

 = Real{{Ex1[exp(ikzz)+exp(− ikzz)]x^ + Ey1[exp(ikzz) +exp(− ikzz)]y^  

 − tanθ Ex1[exp(ikzz) −exp(− ikzz)]  z^ }exp[i(kxx −ω t)]} 

 = 2Ex1cos(kzz) cos(kxx −ω t)  x^ + 2Ey1cos(kz z)cos(kxx −ω t) y^ + 2tanθ Ex1sin(kz z)sin(kxx −ω t)  z^ . 
 (4a) 
 H(r,t) = Real{H1exp[i(k1 ⋅r−ω t)]+ H2exp[i(k2⋅r −ω t)]} 
 = 2Zo

−1n(ω)[Ey1cosθ sin(kzz) sin(kxx −ω t) x^ −(Ex1/cosθ )sin(kz z)sin(kxx −ω t) y^  

 + Ey1sinθ cos(kz z)cos(kxx −ω t)  z^]. (4b) 

c) At the surface of the conductor, there cannot be any tangential E- or perpendicular B-fields, 
which means that Ex= Ey= Hz= 0 at z= ±d/2. This is possible only when cos(±½kzd) = 0, that is, 

   ½(ω d /c)n(ω)cosθ = (m+½)π   →   cosθm = (m +½)λo/[n(ω)d], (5) 
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where the vacuum wavelength, λo= 2πc/ω, has been used. The mode can exist when cosθ <1. 
The smallest possible value of the integer m being zero, it is necessary to have d >½λo/n(ω) to 
ensure the existence of at least one even mode. The even mode is said to be “cut-off” when the 
slab thickness d happens to be below ½λo/n(ω). For single mode operation, d must be in the 
following range: 
 ½λo/n(ω) < d < 3/2λo/n(ω). (6) 

With regard to the polarization state of the guided mode, two possibilities exist: 
i) p-polarized mode (also called transverse magnetic, TM, mode): Ex1≠ 0, Ey1= 0.  
ii) s-polarized mode (also called transverse electric, TE, mode): Ex1= 0, Ey1≠ 0. 

In the case of even modes currently under consideration, the preceding statements with regard to 
cut-off and single-mode operation apply to both TE and TM modes. 

d) According to Maxwell’s 1st equation, ∇ ⋅D =ρfree , the surface charge density is equal to the 
perpendicular D-field, εoε E⊥ , at the surface of a perfect conductor. We thus have: 

mth p-polarized even mode: 

 σ s(x, z = d/2, t) = −εoε Ez(x, z = d /2, t) = 2(−1)m+1εon2(ω)tanθm Ex1sin(kx
(m )x −ω t). (7a) 

mth s-polarized even mode: 
 σ s(x, z = d/2, t) = 0. (7b) 

Also, according to Maxwell’s 2nd equation, ∇ ×H = Jfree+∂ D/∂ t, the surface current density of a 
perfect conductor is equal but perpendicular to the tangential magnetic field, H||. Therefore, 

mth p-polarized even mode: 

 Js(x, z = d /2, t) = Hy(x, z = d /2, t)x^ = 2(−1)m+1n(ω)(Ex1/Zocosθm)sin(kx
(m )x −ω t) x^ . (8a) 

mth s-polarized even mode: 

 Js(x, z = d /2, t) = −Hx(x, z= d /2, t)y^ = 2(−1)m+1n(ω)(Ey1/Zo)cosθm sin(kx
(m )x −ω t) y^. (8b) 

It may be readily verified that the above distributions satisfy the charge-current continuity 
equation,∇ ⋅Js+∂ σ s/∂ t =0. 

e) Setting Ex2 = −Ex1 and Ey2= −Ey1 for an odd mode, the superposition of the two plane-waves 
produces the following fields throughout the waveguide: 

 E(r,t) = Real{E1exp[i(k1 ⋅r −ω t)]+ E2exp[i(k2⋅r−ω t)]} 
 = Real{{Ex1[exp(ikzz)−exp(− ikzz)]x^ + Ey1[exp(ikzz) −exp(− ikzz)]y^  

 − tanθ Ex1[exp(ikzz) + exp(− ikzz)]  z^ }exp[i(kxx −ω t)]} 
 = −2[Ex1sin(kzz) sin(kxx −ω t)  x^ + Ey1sin(kz z)sin(kxx −ω t) y^ + tanθ Ex1cos(kz z)cos(kxx −ω t)  z^]. 
 (9a) 
 H(r,t) = Real{H1exp[i(k1 ⋅r−ω t)]+ H2exp[i(k2⋅r −ω t)]} 
 = −2Zo

−1n(ω)[Ey1cosθ cos(kzz) cos(kxx −ω t) x^ −(Ex1/cosθ )cos(kz z)cos(kxx −ω t) y^  
 + Ey1sinθ sin(kz z)sin(kxx −ω t)  z^]. (9b) 
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At the conductors’ surfaces, z = ±d /2, where Ex = Ey = Hz = 0, we must have sin(±½kzd) = 0, i.e., 

 ½(ω d /c)n(ω)cosθ = mπ    →    cosθm = mλo/[n(ω)d]. (10) 

In this case the lowest-order mode, corresponding to m = 0, obtains when θm = 90º. However, we 
now have kx= (ω/c)n(ω) and kz = 0. Under these circumstances, in accordance with Eqs.(9a) and 
(9b), Ex,Ey,Hx, and Hz will identically vanish throughout the slab. The only surviving fields are 
Ez and Hy, which go to infinity unless one recognizes that, by allowing Ex to approach zero when 
θ →90º, Ez and Hy could attain finite values, namely, 

 E(r,t) = Ezcos(kx
(0 )x −ω t)  z^ ;                    (m = 0), (11a) 

 H(r,t) = −n(ω)(Ez /Zo)cos(kx
(0 )x −ω t) y^ ;           (m = 0). (11b) 

This p-polarized (TM) mode always exists, no matter how thin the slab may be. Taking note of 
the fact that cosθm ≤ 1 for any value of m, the condition for p-polarized single-mode operation in 
the m = 0 guided mode is d <λo/n(ω). 

For odd modes that are s-polarized (TE), the first possibility for propagation is m= 1, in 
which case single-mode operation occurs when λo/n(ω) < d <2λo/n(ω). The cut-off for odd TE 
modes occurs below d =λo/n(ω). 

At the surface of the upper conductor which is in contact with the dielectric slab, surface 
charge and current densities for odd modes are found to be: 

mth odd p-polarized mode (m ≠ 0): 

 σs(x, z = d /2, t) = −εoε Ez(x, z = d /2, t) = 2(−1)mεon2(ω)tanθm Ex1cos(kx
(m )x −ω t), (12a) 

 Js(x, z = d /2, t) = Hy(x, z = d /2, t)x^ = 2(−1)mn(ω)(Ex1/Zocosθm)cos(kx
(m )x −ω t) x^ . (12b) 

mth odd s-polarized mode (m ≠ 0): 

 σs(x, z = d /2, t) = 0, (13a) 

 Js(x, z = d /2, t) = −Hx(x, z= d /2, t)y^ = 2(−1)mn(ω)(Ey1/Zo)cosθm cos(kx
(m )x −ω t) y^ . (13b) 

Once again, it is easy to verify the satisfaction of the charge-current continuity equation for the 
above distributions. 
 


