Problem 1) Let the mirror acquire a velocity V along a direction that makes an angle θ with the x-axis within the $x y$-plane. Denoting by \mathcal{E}^{\prime} the energy of the light pulse after reflection, conservation of energy and momentum before and after reflection yields the following equations.

a) Relativistic treatment:

Energy conservation:

$$
\begin{equation*}
\mathcal{E}+M_{\mathrm{o}} c^{2}=\mathcal{E}^{\prime}+M_{\mathrm{o}} c^{2} / \sqrt{1-V^{2} / c^{2}} \tag{1a}
\end{equation*}
$$

Momentum conservation along x : $\quad \mathcal{E} / C=M_{0} V \cos \theta / \sqrt{1-V^{2} / c^{2}}$
Momentum conservation along $y: \quad\left(\mathcal{E}^{\prime} / c\right)+M_{0} V \sin \theta / \sqrt{1-V^{2} / c^{2}}=0$
These three equations must now be solved for the three unknowns, \mathcal{E}^{\prime}, V, and θ. Dividing Eq.(1c) by Eq. (1b) yields: $\tan \theta=-\mathcal{E}^{\prime} / \mathcal{E}$. Substituting $\mathcal{E}^{\prime}=-\mathcal{E} \tan \theta$ in Eq. (1a) and solving for V, we find

$$
\begin{align*}
& \sqrt{1-V^{2} / c^{2}}=M_{\mathrm{o}} c^{2} /\left[M_{\mathrm{o}} c^{2}+(1+\tan \theta) \mathcal{E}\right] \tag{2a}\\
& V=c \sqrt{2 M_{\mathrm{o}} c^{2}(1+\tan \theta) \mathcal{E}+(1+\tan \theta)^{2} \mathcal{E}^{2} /\left[M_{\mathrm{o}} c^{2}+(1+\tan \theta) \mathcal{E}\right]} \tag{2b}
\end{align*}
$$

The above expressions for V and $\sqrt{1-V^{2} / c^{2}}$ may now be placed into Eq.(1b) to yield

$$
\begin{equation*}
\mathcal{E}=\cos \theta \sqrt{2 M_{\mathrm{o}} c^{2}(1+\tan \theta) \mathcal{E}+(1+\tan \theta)^{2} \mathcal{E}^{2}} \quad \rightarrow \quad \tan \theta=-1 /\left[1+\left(\mathcal{E} / M_{\mathrm{o}} c^{2}\right)\right] \tag{3a}
\end{equation*}
$$

Substitution into the preceding equations for \mathcal{E}^{\prime} and V then yields

$$
\begin{align*}
& \mathcal{E}^{\prime}=\mathcal{E} /\left[1+\left(\mathcal{E} / M_{\mathrm{o}} c^{2}\right)\right] \tag{3b}\\
& V=\left(\mathcal{E} / M_{\mathrm{o}} c\right) \sqrt{2+2\left(\mathcal{E} / M_{\mathrm{o}} c^{2}\right)+\left(\mathcal{E} / M_{\mathrm{o}} c^{2}\right)^{2}} /\left[1+\left(\mathcal{E} / M_{\mathrm{o}} c^{2}\right)+\left(\mathcal{E} / M_{\mathrm{o}} c^{2}\right)^{2}\right] \tag{3c}
\end{align*}
$$

b) Non-relativistic treatment:

Energy conservation:

$$
\begin{equation*}
\mathcal{E}=\mathcal{E}^{\prime}+1 / 2 M_{\mathrm{o}} V^{2} \tag{4a}
\end{equation*}
$$

Momentum conservation along $x: \quad \mathcal{E} / c=M_{0} V \cos \theta$
Momentum conservation along $y: \quad\left(\mathcal{E}^{\prime} / c\right)+M_{\mathrm{o}} V \sin \theta=0$
These three equations must now be solved for the three unknowns, \mathcal{E}^{\prime}, V, and θ. Dividing Eq. (4c) by Eq.(4b) yields: $\tan \theta=-\mathcal{E}^{\prime} / \mathcal{E}$. Substituting for \mathcal{E} and \mathcal{E}^{\prime} from Eqs.(4b) and (4c) into Eq.(4a), then solving for V, yields $V=2 c(\cos \theta+\sin \theta)$. Placing this expression for V into Eq.(4b) and solving for $\tan \theta$, we find

$$
\begin{gather*}
\mathcal{E} / c=2 M_{\mathrm{o}} c(\cos \theta+\sin \theta) \cos \theta=2 M_{\mathrm{o}} c(1+\tan \theta) \cos ^{2} \theta=2 M_{\mathrm{o}} c(1+\tan \theta) /\left(1+\tan ^{2} \theta\right) \rightarrow \\
\tan \theta=\left(M_{\mathrm{o}} c^{2} / \mathcal{E}\right)\left[1-\sqrt{1+2\left(\mathcal{E} / M_{\mathrm{o}} c^{2}\right)-\left(\mathcal{E} / M_{\mathrm{o}} c^{2}\right)^{2}}\right], \tag{5a}\\
\mathcal{E}^{\prime}=-\mathcal{E} \tan \theta, \tag{5b}\\
V=2 c(1+\tan \theta) / \sqrt{1+\tan ^{2} \theta .} \tag{5c}
\end{gather*}
$$

Problem 2) a) Snell's law: $k_{x}^{(\mathrm{i})}=k_{x}^{(\mathrm{t})}$. Below, both $k_{x}{ }^{(\mathrm{i})}$ and $k_{x}{ }^{(\mathrm{t})}$ will be written as k_{x}.
Dispersion relation in free space: $\boldsymbol{k}^{(\mathrm{i})^{2}}=k_{x}{ }^{(\mathrm{i})^{2}}+k_{z}^{(\mathrm{i})^{2}}=(\omega / c)^{2}$; therefore, $k_{z}{ }^{(\mathrm{i})}= \pm \sqrt{(\omega / c)^{2}-k_{x}^{2}}$. Note that, in general, the square root will yield a complex number. Either the plus sign or the minus sign (but not both) should be used for the square root.
Dispersion relation in material medium: $\boldsymbol{k}^{(\mathrm{t})^{2}}=k_{x}^{(\mathrm{t})^{2}}+k_{z}^{(\mathrm{t})^{2}}=(\omega / c)^{2} \mu(\omega) \varepsilon(\omega)$. Since $k_{x}^{(\mathrm{i})}=k_{x}^{(\mathrm{t})}=k_{x}$ and $\mu(\omega)=1$, we will have $k_{z}^{(\mathrm{t})}= \pm \sqrt{(\omega / c)^{2} \varepsilon(\omega)-k_{x}^{2}}$. As before, the square root will, in general, yield a complex number. Either the plus sign or the minus sign (but not both) should be used.
b) Maxwell's first equation: $\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{E}_{0}{ }^{(\mathrm{i})}=0 \rightarrow k_{x}{ }^{(\mathrm{i})} E_{x 0}{ }^{(\mathrm{i})}+k_{z}{ }^{(\mathrm{i})} E_{z 0}{ }^{(\mathrm{i})}=0 \rightarrow E_{z 0}{ }^{(\mathrm{i})}=-k_{x} E_{x 0}{ }^{(\mathrm{i})} / k_{z}^{(\mathrm{i})}$. transmitted beam: $\boldsymbol{k}^{(\mathrm{t})} \cdot \boldsymbol{E}_{\mathrm{o}}{ }^{(\mathrm{t})}=0 \rightarrow E_{z 0}{ }^{(\mathrm{t})}=-k_{x} E_{\chi 0}{ }^{(\mathrm{t})} / k_{z}{ }^{(\mathrm{t})}$.

Maxwell's third equation; incident beam: $\boldsymbol{k}^{(\mathrm{i})} \times \boldsymbol{E}_{0}{ }^{(\mathrm{i})}=\mu_{0} \omega \boldsymbol{H}_{0}{ }^{(\mathrm{i})} \rightarrow H_{x 0}{ }^{(\mathrm{i})}=-k_{z}{ }^{(\mathrm{i})} E_{y o}{ }^{(\mathrm{i})} /\left(\mu_{0} \omega\right)$;

$$
\begin{aligned}
& H_{y 0}{ }^{(\mathrm{i})}=\left[k_{z}{ }^{(\mathrm{i})} E_{x 0}{ }^{(\mathrm{i})}-k_{x} E_{z 0}{ }^{(\mathrm{i})}\right] /\left(\mu_{0} \omega\right)=\varepsilon_{0} \omega E_{x 0}{ }^{(\mathrm{i})} / k_{z}{ }^{(\mathrm{i})} ; \quad H_{z 0}{ }^{(\mathrm{i})}=k_{x} E_{y 0}{ }^{(\mathrm{i})} /\left(\mu_{0} \omega\right) . \\
& \text { transmitted beam: } \boldsymbol{k}^{(\mathrm{t})} \times \boldsymbol{E}_{\mathrm{o}}{ }^{(\mathrm{t})}=\mu_{0} \mu(\omega) \omega \boldsymbol{H}_{0}{ }^{(\mathrm{t})} \rightarrow H_{x 0}{ }^{(\mathrm{t})}=-k_{z}{ }^{(\mathrm{t})} E_{y 0}{ }^{(\mathrm{t})} /\left(\mu_{0} \omega\right) ; \\
& H_{y 0}{ }^{(\mathrm{t})}=\left[k_{z}^{(\mathrm{t})} E_{x 0}{ }^{(\mathrm{t})}-k_{x} E_{z 0}{ }^{(\mathrm{t})}\right] /\left(\mu_{0} \omega\right)=\varepsilon_{0} \varepsilon \omega E_{x 0}{ }^{(\mathrm{t})} / k_{z}^{(\mathrm{t})} ; \quad H_{z 0}{ }^{(\mathrm{t})}=k_{x} E_{y 0}{ }^{(\mathrm{t})} /\left(\mu_{0} \omega\right) \text {. }
\end{aligned}
$$

c) Continuity equations for the tangential E - and H-fields at the $z=0$ interface:

$$
\begin{aligned}
& \text { p-polarization: }\left\{\begin{array} { l }
{ E _ { x 0 } { } ^ { (\mathrm { i }) } = E _ { x 0 } { } ^ { (\mathrm { t }) } } \\
{ H _ { y o } { } ^ { (\mathrm { i }) } = H _ { y 0 } { } ^ { (\mathrm { t }) } \rightarrow \varepsilon _ { 0 } \omega E _ { x 0 } { } ^ { (\mathrm { i }) } / k _ { z } { } ^ { (\mathrm { i }) } = \varepsilon _ { 0 } \varepsilon \omega E _ { x 0 } { } ^ { (\mathrm { t }) } / k _ { z } { } ^ { (\mathrm { t }) } \rightarrow k _ { z } { } ^ { (\mathrm { t }) } = \varepsilon (\omega) k _ { z } { } ^ { (\mathrm { i }) } . } \\
{ \text { s-polarization : } }
\end{array} \left\{\begin{array}{l}
E_{y o}{ }^{(\mathrm{i})}=E_{y o}{ }^{(\mathrm{t})} \\
H_{x 0}{ }^{(\mathrm{i})}=H_{x 0}{ }^{(\mathrm{t})} \rightarrow k_{z}{ }^{(\mathrm{t})}=k_{z}{ }^{(\mathrm{i})} .
\end{array}\right.\right.
\end{aligned}
$$

d) For the case of p-polarization, satisfying the boundary conditions without a reflected wave requires that $k_{z}^{(\mathrm{t})}=\varepsilon(\omega) k_{z}^{(\mathrm{i})}$. Substituting in this equation the expressions for $k_{z}^{(\mathrm{i})}$ and $k_{z}^{(\mathrm{t})}$ obtained in part (a), we find

$$
(\omega / c)^{2} \varepsilon(\omega)-k_{x}^{2}=\varepsilon^{2}(\omega)\left[(\omega / c)^{2}-k_{x}^{2}\right] \rightarrow k_{x}= \pm(\omega / c) \sqrt{\varepsilon(\omega) /[1+\varepsilon(\omega)]} .
$$

For the case of s-polarization, the boundary conditions in the absence of a reflected wave will be satisfied only when $k_{z}{ }^{(\mathrm{i})}=k_{z}{ }^{(\mathrm{t})}$, which is impossible so long as $\varepsilon(\omega) \neq 1$.
e) Case i: $\varepsilon^{\prime}>0, \varepsilon^{\prime \prime}=0$. Here $\varepsilon^{\prime}=n^{2}$, where n is the real-valued, positive refractive index of the material medium. When the reflection coefficient for p-polarized light vanishes, we will have $k_{x}= \pm(\omega / c) \sqrt{n^{2} /\left(1+n^{2}\right)}= \pm(\omega / c) \sin \theta_{\mathrm{B}}$ where $\theta_{\mathrm{B}}=\tan ^{-1} n$ is the Brewster angle. Substituting for k_{x} in the expressions for $k_{z}{ }^{(\mathrm{i})}$ and $k_{z}{ }^{(\mathrm{t})}$, we find $k_{z}{ }^{(\mathrm{i})}=-(\omega / c) \cos \theta_{\mathrm{B}}$ and $k_{z}{ }^{(\mathrm{t})}=-\left(n^{2} \omega / c\right) \cos \theta_{\mathrm{B}}$. Both the incident and transmitted plane-waves are thus homogeneous; they propagate downward, along the negative z-axis, and satisfy the condition $k_{z}^{(t)}=\varepsilon(\omega) k_{z}^{(i)}$ obtained in part (c) for p-polarized light.

Case ii: $\varepsilon^{\prime}<-1, \varepsilon^{\prime \prime}=0$. When the reflection coefficient for p-polarized light vanishes, we will have $k_{x}= \pm(\omega / c) \sqrt{\left|\varepsilon^{\prime}\right| /\left(\left|\varepsilon^{\prime}\right|-1\right)}$, which is a real-valued number with a magnitude greater
than ω / c. Substitution for k_{x} in the expressions for $k_{z}{ }^{(\mathrm{i})}$ and $k_{z}{ }^{(\mathrm{t})}$ yields $k_{z}{ }^{(\mathrm{i})}=\mathrm{i}(\omega / c) / \sqrt{\left|\varepsilon^{\prime}\right|-1}$ and $k_{z}{ }^{(\mathrm{t})}=-\mathrm{i}(\omega / c)\left|\varepsilon^{\prime}\right| / \sqrt{\left|\varepsilon^{\prime}\right|-1}$. Both the incident and transmitted waves are thus evanescent, with real-valued k_{x} and imaginary k_{z}; they attenuate away from the interface along the $\pm z$-axis, and satisfy the required condition $k_{z}{ }^{(\mathrm{t})}=\varepsilon(\omega) k_{z}{ }^{(\mathrm{i})}$ obtained for p-polarized light in part (c). The time-averaged Poynting vector $<\boldsymbol{S}>=1 / 2 \operatorname{Real}\left(\boldsymbol{E} \times \boldsymbol{H}^{*}\right)$ can be readily calculated from the (E_{x}, E_{z}, H_{y}) fields given in part (b). The energy is seen to flow along k_{x} in the free space, and along $-k_{x}$ inside the medium. On both sides of the interface, the time-averaged energy flux along the z-axis is zero. This excited surface-wave, residing partly in the free space and partly in the material medium, is known as a surface plasmon polariton.
Case iii: $\varepsilon^{\prime}<0, \varepsilon^{\prime \prime}>0$. In this case $k_{x}= \pm(\omega / c) \sqrt{\left(\varepsilon^{\prime}+\mathrm{i} \varepsilon^{\prime \prime}\right) /\left(1+\varepsilon^{\prime}+\mathrm{i} \varepsilon^{\prime \prime}\right)}$ is complex-valued. Substitution for k_{x} in the expressions for $k_{z}^{(\mathrm{i})}$ and $k_{z}^{(\mathrm{t})}$ yields $k_{z}{ }^{(\mathrm{i})}=(\omega / c)\left(1+\varepsilon^{\prime}+\mathrm{i} \varepsilon^{\prime \prime}\right)^{-1 / 2}$ and $k_{z}^{(\mathrm{t})}=(\omega / c)\left(\varepsilon^{\prime}+\mathrm{i} \varepsilon^{\prime \prime}\right)\left(1+\varepsilon^{\prime}+\mathrm{i} \varepsilon^{\prime \prime}\right)^{-1 / 2}$. The complex square root $\left(1+\varepsilon^{\prime}+\mathrm{i} \varepsilon^{\prime \prime}\right)^{-1 / 2}$ is chosen to give $k_{z}^{(\mathrm{i})}$ a positive imaginary part. Note that our choice of signs for $k_{z}{ }^{(\mathrm{i})}$ and $k_{z}^{(\mathrm{t})}$ satisfies the required condition $k_{z}^{(\mathrm{t})}=\varepsilon(\omega) k_{z}^{(\mathrm{i})}$ obtained in part (c). We must prove that the imaginary parts of $k_{z}{ }^{(\mathrm{i})}$ and $k_{z}{ }^{(\mathrm{t})}$ always have opposite signs. To this end, note that $(1+\varepsilon)^{-1 / 2}+\varepsilon(1+\varepsilon)^{-1 / 2}=(1+\varepsilon)^{1 / 2}$; therefore, $\varepsilon(1+\varepsilon)^{-1 / 2}=(1+\varepsilon)^{1 / 2}-(1+\varepsilon)^{-1 / 2}$. From the complex-plane diagram below it must be clear that, for any complex number α, the imaginary parts of $\alpha-(1 / \alpha)$ and $(1 / \alpha)$ always have opposite signs, which completes the proof. The evanescent plane-wave in the free space region decays exponentially along the imaginary part of $k_{x}^{(\mathrm{i})} \hat{\boldsymbol{x}}+k_{z}^{(\mathrm{i})} \hat{\boldsymbol{z}}$, which points away from the interface. The inhomogeneous plane-wave in the material medium also decays exponentially away from the interface, this one along the imaginary part of $k_{x}^{(t)} \hat{\boldsymbol{x}}+k_{z}^{(\mathrm{t})} \hat{\boldsymbol{z}}$.

Typical metals at optical frequencies have large negative values of ε^{\prime} in addition to small positive values of $\varepsilon^{\prime \prime}$. For these, the surface plasmon polariton wave will have a k_{x} value slightly greater than unity (in magnitude), with a small imaginary component. The evanescent wave in the free space decays rather slowly along the z-axis, whereas the inhomogeneous
 wave in the metal decays quite rapidly away from the interface. The plasmonic wave is thus confined to a thin layer at the surface of the metallic medium. The time-averaged Poynting vector $<\boldsymbol{S}>=1 / 2 \operatorname{Real}\left(\boldsymbol{E} \times \boldsymbol{H}^{*}\right)$ can be readily calculated from the $\left(E_{x}, E_{z}, H_{y}\right)$ fields given in part (b). The horizontal energy flux, $\left\langle S_{x}\right\rangle$, is seen to be along $\operatorname{Real}\left(k_{x}\right)$ in the free space, and along $\operatorname{Real}\left(-k_{x}\right)$ inside the medium. On both sides of the interface, vertical energy flux, $<S_{z}>$, is downward, i.e., points along the negative z axis. Such plasmonic waves are generally long-range, because $\varepsilon^{\prime \prime}$ is fairly small and the losses are confined to an exceedingly thin layer at the surface of the metallic medium.

Case iv: $\varepsilon^{\prime}>0, \varepsilon^{\prime \prime}>0$. This case is similar to case (iii), with the following exceptions: The magnitude of k_{x} is generally less than unity, with an imaginary part that may be large or
small, depending on the relative values of ε^{\prime} and $\varepsilon^{\prime \prime}$. For a low-loss medium, where $\varepsilon^{\prime \prime}$ is fairly small, the exponential decay of the wave inside the medium (away from the interface) is rather slow, resulting in a large penetration depth. The horizontal energy flux, $\left\langle S_{x}\right\rangle$, is in the direction of $\operatorname{Real}\left(k_{x}\right)$, both in the free space region and inside the material medium. The vertical energy flux, $\left\langle S_{z}>\right.$, always pointing along the negative z axis, is large, irrespective of whether $\varepsilon^{\prime \prime}$ is large or small. The wave is thus very different from a surface plasmon polariton, despite similarities in their mathematical structure. When integrated over the penetration depth, the lost energy will be substantial, even for small values of $\varepsilon^{\prime \prime}$. Therefore, a p-polarized wave-packet comprising an evanescent plane-wave in the free space region and an inhomogeneous plane-wave in a medium having $\varepsilon^{\prime}>0, \varepsilon^{\prime \prime}>0$, cannot behave similarly to a long-range surface wave; too much energy is dissipated within its penetration depth, and not enough energy is transported parallel to the surface of the medium.

Problem 3) a) Using the dispersion relation, $\boldsymbol{k}^{2}=k_{x}{ }^{2}+k_{z}^{2}=(\omega / c)^{2} \mu(\omega) \varepsilon(\omega)$, and the fact that the x-component of \boldsymbol{k} is given by $k_{x}=(\omega / c) n(\omega) \sin \theta$, we write

$$
\begin{equation*}
k_{z}=\sqrt{(\omega / c)^{2} n(\omega)^{2}-k_{x}^{2}}=(\omega / c) n(\omega) \cos \theta . \tag{1}
\end{equation*}
$$

Maxwell's $1^{\text {st }}$ equation: $\boldsymbol{k}_{1} \cdot \boldsymbol{E}_{1}=0 \rightarrow k_{x} E_{x 1}+k_{z} E_{z 1}=0 \rightarrow E_{z 1}=-k_{x} E_{x 1} / k_{z} \rightarrow E_{z 1}=-(\tan \theta) E_{x 1}$.

$$
\begin{equation*}
\text { Similarly, } \boldsymbol{k}_{2} \cdot \boldsymbol{E}_{2}=0 \rightarrow E_{22}=(\tan \theta) E_{x 2} . \tag{2}
\end{equation*}
$$

Maxwell's $3{ }^{\text {rd }}$ equation: $\boldsymbol{k}_{1} \times \boldsymbol{E}_{1}=\mu_{0} \mu(\omega) \omega \boldsymbol{H}_{1} \rightarrow H_{x 1}=-k_{z} E_{y 1} /\left(\mu_{0} \omega\right) \rightarrow H_{x 1}=-n(\omega) E_{y 1} \cos \theta / Z_{0}$;

$$
\begin{equation*}
H_{y 1}=\left(k_{z} E_{x 1}-k_{x} E_{z 1}\right) /\left(\mu_{0} \omega\right)=n(\omega) E_{x 1} /\left(Z_{0} \cos \theta\right) ; \quad H_{z 1}=k_{x} E_{y 1} /\left(\mu_{0} \omega\right)=n(\omega) E_{y 1} \sin \theta / Z_{0} . \tag{3a}
\end{equation*}
$$

Similarly, $H_{x 2}=n(\omega) E_{y 2} \cos \theta / Z_{0} ; \quad H_{y 2}=-n(\omega) E_{x 2} /\left(Z_{0} \cos \theta\right) ; \quad H_{z 2}=n(\omega) E_{y 2} \sin \theta / Z_{0}$.
b) Setting $E_{x 2}=E_{x 1}$ and $E_{y 2}=E_{y 1}$ for an even mode, the superposition of the two plane-waves produces the following fields throughout the waveguide:

$$
\begin{aligned}
\boldsymbol{E}(\boldsymbol{r}, t)= & \operatorname{Real}\left\{\boldsymbol{E}_{1} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}-\omega t\right)\right]+\boldsymbol{E}_{2} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{2} \cdot \boldsymbol{r}-\omega t\right)\right]\right\} \\
= & \operatorname{Real}\left\{\left[\boldsymbol{E}_{1} \exp \left(\mathrm{i} k_{z} z\right)+\boldsymbol{E}_{2} \exp \left(-\mathrm{i} k_{z} z\right)\right] \exp \left[\mathrm{i}\left(k_{x} x-\omega t\right)\right]\right\} \\
= & \operatorname{Real}\left\{\left\{E_{x 1}\left[\exp \left(\mathrm{i} k_{z} z\right)+\exp \left(-\mathrm{i} k_{z} z\right)\right] \hat{\boldsymbol{x}}+E_{y 1}\left[\exp \left(\mathrm{i} k_{z} z\right)+\exp \left(-\mathrm{i} k_{z} z\right)\right] \hat{\boldsymbol{y}}\right.\right. \\
& \left.\left.\quad-\tan \theta E_{x 1}\left[\exp \left(\mathrm{i} k_{z} z\right)-\exp \left(-\mathrm{i} k_{z} \mathrm{z}\right)\right] \hat{z}\right\} \exp \left[\mathrm{i}\left(k_{x} x-\omega t\right)\right]\right\}
\end{aligned}
$$

$$
=2 E_{x 1} \cos \left(k_{z} z\right) \cos \left(k_{x} x-\omega t\right) \hat{\boldsymbol{x}}+2 E_{y 1} \cos \left(k_{z} z\right) \cos \left(k_{x} x-\omega t\right) \hat{\boldsymbol{y}}+2 \tan \theta E_{x 1} \sin \left(k_{z} z\right) \sin \left(k_{x} x-\omega t\right) \hat{z}
$$

$$
\begin{align*}
& \boldsymbol{H}(\boldsymbol{r}, t)= \operatorname{Real}\left\{\boldsymbol{H}_{1} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}-\omega t\right)\right]+\boldsymbol{H}_{2} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{2} \cdot \boldsymbol{r}-\omega t\right)\right]\right\} \tag{4a}\\
&=2 Z_{o}^{-1} n(\omega)\left[E_{y 1} \cos \theta \sin \left(k_{z} z\right) \sin \left(k_{x} x-\omega t\right) \hat{\boldsymbol{x}}-\left(E_{x 1} / \cos \theta\right) \sin \left(k_{z} z\right) \sin \left(k_{x} x-\omega t\right) \hat{\boldsymbol{y}}\right. \\
&\left.+E_{y 1} \sin \theta \cos \left(k_{z} z\right) \cos \left(k_{x} x-\omega t\right) \hat{\mathbf{z}}\right] . \tag{4b}
\end{align*}
$$

c) At the surface of the conductor, there cannot be any tangential E - or perpendicular B-fields, which means that $E_{x}=E_{y}=H_{z}=0$ at $z= \pm d / 2$. This is possible only when $\cos \left(\pm 1 / 2 k_{z} d\right)=0$, that is,

$$
\begin{equation*}
1 / 2(\omega d / c) n(\omega) \cos \theta=(m+1 / 2) \pi \rightarrow \cos \theta_{m}=(m+1 / 2) \lambda_{0} /[n(\omega) d], \tag{5}
\end{equation*}
$$

where the vacuum wavelength, $\lambda_{0}=2 \pi c / \omega$, has been used. The mode can exist when $\cos \theta<1$. The smallest possible value of the integer m being zero, it is necessary to have $d>1 / 2 \lambda_{0} / n(\omega)$ to ensure the existence of at least one even mode. The even mode is said to be "cut-off" when the slab thickness d happens to be below $1 / 2 \lambda_{0} / n(\omega)$. For single mode operation, d must be in the following range:

$$
\begin{equation*}
1 / 2 \lambda_{0} / n(\omega)<d<{ }^{3} / 2 \lambda_{0} / n(\omega) . \tag{6}
\end{equation*}
$$

With regard to the polarization state of the guided mode, two possibilities exist:
i) p-polarized mode (also called transverse magnetic, TM, mode): $E_{x 1} \neq 0, E_{y 1}=0$.
ii) s-polarized mode (also called transverse electric, TE, mode): $E_{x 1}=0, E_{y 1} \neq 0$.

In the case of even modes currently under consideration, the preceding statements with regard to cut-off and single-mode operation apply to both TE and TM modes.
d) According to Maxwell's $1^{\text {st }}$ equation, $\boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho_{\text {free }}$, the surface charge density is equal to the perpendicular D-field, $\varepsilon_{0} \varepsilon E_{\perp}$, at the surface of a perfect conductor. We thus have:
$m^{\text {th }} p$-polarized even mode:

$$
\begin{equation*}
\sigma_{s}(x, z=d / 2, t)=-\varepsilon_{0} \varepsilon E_{z}(x, z=d / 2, t)=2(-1)^{m+1} \varepsilon_{0} n^{2}(\omega) \tan \theta_{m} E_{x 1} \sin \left(k_{x}^{(m)} x-\omega t\right) . \tag{7a}
\end{equation*}
$$

$m^{t h} s$-polarized even mode:

$$
\begin{equation*}
\sigma_{s}(x, z=d / 2, t)=0 . \tag{7b}
\end{equation*}
$$

Also, according to Maxwell's $2^{\text {nd }}$ equation, $\boldsymbol{\nabla} \times \boldsymbol{H}=\boldsymbol{J}_{\text {free }}+\partial \boldsymbol{D} / \partial t$, the surface current density of a perfect conductor is equal but perpendicular to the tangential magnetic field, $\boldsymbol{H}_{\| \mid}$. Therefore,
$m^{\text {th }} p$-polarized even mode:

$$
\begin{equation*}
\boldsymbol{J}_{s}(x, z=d / 2, t)=H_{y}(x, z=d / 2, t) \hat{\boldsymbol{x}}=2(-1)^{m+1} n(\omega)\left(E_{x 1} / Z_{0} \cos \theta_{m}\right) \sin \left(k_{x}^{(m)} x-\omega t\right) \hat{\boldsymbol{x}} . \tag{8a}
\end{equation*}
$$

$m^{\text {th }} s$-polarized even mode:

$$
\begin{equation*}
J_{s}(x, z=d / 2, t)=-H_{x}(x, z=d / 2, t) \hat{\boldsymbol{y}}=2(-1)^{m+1} n(\omega)\left(E_{y 1} / Z_{o}\right) \cos \theta_{m} \sin \left(k_{x}^{(m)} x-\omega t\right) \hat{y} . \tag{8b}
\end{equation*}
$$

It may be readily verified that the above distributions satisfy the charge-current continuity equation, $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{s}+\partial \sigma_{s} / \partial t=0$.
e) Setting $E_{x 2}=-E_{x 1}$ and $E_{y 2}=-E_{y 1}$ for an odd mode, the superposition of the two plane-waves produces the following fields throughout the waveguide:

$$
\begin{align*}
& \boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Real}\left\{\boldsymbol{E}_{1} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}-\omega t\right)\right]+\boldsymbol{E}_{2} \exp \left[\mathrm{i}\left(\mathbf{k}_{2} \cdot \boldsymbol{r}-\omega t\right)\right]\right\} \\
& \quad=\operatorname{Real}\left\{\left\{E_{x 1}\left[\exp \left(\mathrm{i} k_{z} z\right)-\exp \left(-\mathrm{i} k_{z} z\right)\right] \hat{\boldsymbol{x}}+E_{y 1}\left[\exp \left(\mathrm{i} k_{z} z\right)-\exp \left(-\mathrm{i} k_{z} z\right)\right] \hat{\boldsymbol{y}}\right.\right. \\
& \left.\left.\quad-\tan \theta E_{x 1}\left[\exp \left(\mathrm{i} k_{z} z\right)+\exp \left(-\mathrm{i} k_{z} z\right)\right] \hat{\boldsymbol{z}}\right\} \exp \left[\mathrm{i}\left(k_{x} x-\omega t\right)\right]\right\} \\
& =-2\left[E_{x 1} \sin \left(k_{z} z\right) \sin \left(k_{x} x-\omega t\right) \hat{\boldsymbol{x}}+E_{y 1} \sin \left(k_{z} z\right) \sin \left(k_{x} x-\omega t\right) \hat{\boldsymbol{y}}+\tan \theta E_{x 1} \cos \left(k_{z} z\right) \cos \left(k_{x} x-\omega t\right) \hat{z}\right] . \tag{9a}
\end{align*}
$$

At the conductors' surfaces, $z= \pm d / 2$, where $E_{x}=E_{y}=H_{z}=0$, we must have $\sin \left(\pm 1 / 2 k_{z} d\right)=0$, i.e.,

$$
\begin{equation*}
1 / 2(\omega d / c) n(\omega) \cos \theta=m \pi \quad \rightarrow \quad \cos \theta_{m}=m \lambda_{0} /[n(\omega) d] . \tag{10}
\end{equation*}
$$

In this case the lowest-order mode, corresponding to $m=0$, obtains when $\theta_{m}=90^{\circ}$. However, we now have $k_{x}=(\omega / c) n(\omega)$ and $k_{z}=0$. Under these circumstances, in accordance with Eqs. (9a) and (9b), E_{x}, E_{y}, H_{x}, and H_{z} will identically vanish throughout the slab. The only surviving fields are E_{z} and H_{y}, which go to infinity unless one recognizes that, by allowing E_{x} to approach zero when $\theta \rightarrow 90^{\circ}, E_{z}$ and H_{y} could attain finite values, namely,

$$
\begin{array}{cc}
\boldsymbol{E}(\boldsymbol{r}, t)=E_{z} \cos \left(k_{x}^{(0)} x-\omega t\right) \hat{\boldsymbol{z}} ; & (m=0), \\
\boldsymbol{H}(\boldsymbol{r}, t)=-n(\omega)\left(E_{z} / Z_{o}\right) \cos \left(k_{x}^{(0)} x-\omega t\right) \hat{\boldsymbol{y}} ; & (m=0) . \tag{11b}
\end{array}
$$

This p-polarized (TM) mode always exists, no matter how thin the slab may be. Taking note of the fact that $\cos \theta_{m} \leq 1$ for any value of m, the condition for p-polarized single-mode operation in the $m=0$ guided mode is $d<\lambda_{0} / n(\omega)$.

For odd modes that are s-polarized (TE), the first possibility for propagation is $m=1$, in which case single-mode operation occurs when $\lambda_{0} / n(\omega)<d<2 \lambda_{0} / n(\omega)$. The cut-off for odd TE modes occurs below $d=\lambda_{0} / n(\omega)$.

At the surface of the upper conductor which is in contact with the dielectric slab, surface charge and current densities for odd modes are found to be:
$m^{\text {th }}$ odd p-polarized mode $(m \neq 0)$:

$$
\begin{align*}
& \sigma_{s}(x, z=d / 2, t)=-\varepsilon_{0} \varepsilon E_{z}(x, z=d / 2, t)=2(-1)^{m} \varepsilon_{0} n^{2}(\omega) \tan \theta_{m} E_{x 1} \cos \left(k_{x}^{(m)} x-\omega t\right), \tag{12a}\\
& J_{s}(x, z=d / 2, t)=H_{y}(x, z=d / 2, t) \hat{\boldsymbol{x}}=2(-1)^{m} n(\omega)\left(E_{x 1} / Z_{0} \cos \theta_{m}\right) \cos \left(k_{x}^{(m)}{ }_{x}-\omega t\right) \hat{\boldsymbol{x}} . \tag{12b}
\end{align*}
$$

$m^{\text {th }}$ odd s-polarized mode $(m \neq 0)$:

$$
\begin{align*}
& \sigma_{s}(x, z=d / 2, t)=0, \tag{13a}\\
& \boldsymbol{J}_{s}(x, z=d / 2, t)=-H_{x}(x, z=d / 2, t) \hat{\boldsymbol{y}}=2(-1)^{m} n(\omega)\left(E_{y 1} / Z_{o}\right) \cos \theta_{m} \cos \left(k_{x}^{(m)} x-\omega t\right) \hat{\boldsymbol{y}} . \tag{13b}
\end{align*}
$$

Once again, it is easy to verify the satisfaction of the charge-current continuity equation for the above distributions.

