Problem 1)

a) $\rho_{12}=\left(n_{1}-n_{2}\right) /\left(n_{1}+n_{2}\right)$,
$\tau_{12}=2 n_{1} /\left(n_{1}+n_{2}\right)$.
$\rho_{21}=\left(n_{2}-n_{1}\right) /\left(n_{2}+n_{1}\right)=-\rho_{12}$,
$\tau_{21}=2 n_{2} /\left(n_{2}+n_{1}\right)$.
$\rho_{23}=\left(n_{2}-n_{3}\right) /\left(n_{2}+n_{3}\right)=\left(n_{2}-n-\mathrm{i} \kappa\right) /\left(n_{2}+n+\mathrm{i} \kappa\right)$,
$\tau_{23}=2 n_{2} /\left(n_{2}+n_{3}\right)$.
b) Immediately beneath the entrance facet, $E_{0}^{(\mathrm{a})}$ receives a contribution from $E_{0}^{(\mathrm{i})}$ via the transmission coefficient τ_{12}. A second contribution comes from $E_{0}^{(\mathrm{b})}$ upon reflection at the upper dielectric surface (reflection coefficient $=\rho_{21}$). However, $E_{0}^{(\mathrm{b})}$ itself is obtained from $E_{0}^{(\mathrm{a})}$ after a downward propagation through the thickness d, reflection at the substrate interface (reflection coefficient $=\rho_{23}$), and an upward propagation, again through the thickness d. The selfconsistency equation for $E_{0}^{(\mathrm{a})}$ may thus be written as follows:

$$
E_{0}^{(\mathrm{a})}=\tau_{12} E_{0}^{(\mathrm{i})}+\rho_{21} \rho_{23} \exp \left(2 \mathrm{i} n_{2} k_{0} d\right) E_{0}^{(\mathrm{a})} \quad \rightarrow \quad E_{0}^{(\mathrm{a})}=\frac{\tau_{12}}{1-\rho_{21} \rho_{23} \exp \left(\mathrm{i} 4 \pi n_{2} d / \lambda_{0}\right)} E_{0}^{(\mathrm{i})} .
$$

c) The E-field amplitude transmitted into the substrate is obtained by propagating $E_{0}^{(\mathrm{a})}$ downward through the thickness d, then multiplying by τ_{23} to account for transmission from immediately above to immediately below the dielectric-substrate interface. We will have

$$
E_{0}^{(\mathrm{t})}=\tau_{23} \exp \left(\mathrm{i} n_{2} k_{0} d\right) E_{0}^{(\mathrm{a})}=\frac{\tau_{12} \tau_{23} \exp \left(\mathrm{i} 2 \pi n_{2} d / \lambda_{0}\right)}{1-\rho_{21} \rho_{23} \exp \left(\mathrm{i} 4 \pi n_{2} d / \lambda_{0}\right)} E_{0}^{(\mathrm{i})} .
$$

d) The reflected E-field amplitude at the top of the dielectric layer has two contributions. The first comes from direct reflection from the top facet of the incident amplitude $E_{0}^{(\mathrm{i})}$. The second contribution comes from $E_{0}^{(\mathrm{b})}$ after multiplication by τ_{21}. However, $E_{0}^{(\mathrm{b})}$ itself arises from the propagation of $E_{0}^{(\mathrm{a})}$ downward through the thickness d, reflection at the substrate interface, then upward propagation through the thickness d of the dielectric layer. We will have

$$
\begin{aligned}
E_{0}^{(\mathrm{r})} & =\rho_{12} E_{0}^{(\mathrm{i})}+\tau_{21} \rho_{23} \exp \left(2 \mathrm{i} n_{2} k_{0} d\right) E_{0}^{(\mathrm{a})} \\
& =\left[\rho_{12}+\frac{\tau_{12} \tau_{21} \rho_{23} \exp \left(2 \mathrm{in} k_{0} d\right)}{1-\rho_{21} \rho_{23} \exp \left(2 \mathrm{in}_{2} k_{0} d\right)}\right] E_{0}^{(\mathrm{i})}=\left[\frac{\rho_{12}+\left(\tau_{12} \tau_{21}-\rho_{12} \rho_{21}\right) \rho_{23} \exp \left(2 i n_{2} k_{0} d\right)}{1-\rho_{21} \rho_{23} \exp \left(2 \operatorname{in} n_{2} k_{0} d\right)}\right] E_{0}^{(\mathrm{i})} .
\end{aligned}
$$

Now, using the expressions for $\rho_{12}, \tau_{12}, \rho_{21}, \tau_{21}$ obtained in part (a), we write

$$
\tau_{12} \tau_{21}-\rho_{12} \rho_{21}=\frac{4 n_{1} n_{2}}{\left(n_{1}+n_{2}\right)^{2}}+\frac{\left(n_{1}-n_{2}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}=1.0
$$

Consequently,

$$
E_{0}^{(\mathrm{r})}=\frac{\rho_{12}+\rho_{23} \exp \left(\mathrm{i} 4 \pi n_{2} d / \lambda_{0}\right)}{1+\rho_{12} \rho_{23} \exp \left(\mathrm{i} 4 \pi n_{2} d / \lambda_{0}\right)} E_{0}^{(\mathrm{i})} .
$$

For a given refractive index n_{2}, the thickness d of the dielectric layer can be adjusted to control the reflectance of the bare substrate.
e) When $d=m \lambda_{0} /\left(2 n_{2}\right)$, the phase-factor $\exp \left(\mathrm{i} 4 \pi n_{2} d / \lambda_{0}\right)$ appearing in the preceding equation becomes equal to 1.0 . We will then have

$$
\begin{aligned}
E_{0}^{(\mathrm{r})} / E_{0}^{(\mathrm{i})} & =\frac{\rho_{12}+\rho_{23}}{1+\rho_{12} \rho_{23}}=\frac{\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)+\left(\frac{n_{2}-n_{3}}{n_{2}+n_{3}}\right)}{1+\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)\left(\frac{n_{2}-n_{3}}{n_{2}+n_{3}}\right)}=\frac{\left(n_{1}-n_{2}\right)\left(n_{2}+n_{3}\right)+\left(n_{2}-n_{3}\right)\left(n_{1}+n_{2}\right)}{\left(n_{1}+n_{2}\right)\left(n_{2}+n_{3}\right)+\left(n_{1}-n_{2}\right)\left(n_{2}-n_{3}\right)} \\
& =\frac{n_{1} n_{2}+n_{1} n_{3}-n_{2}^{2}-n_{2} n_{3}+n_{1} n_{2}+n_{2}^{2}-n_{1} n_{3}-n_{2} n_{3}}{n_{1} n_{2}+n_{1} n_{3}+n_{2}^{2}+n_{2} n_{3}+n_{1} n_{2}-n_{1} n_{3}-n_{2}^{2}+n_{2} n_{3}}=\frac{2 n_{1} n_{2}-2 n_{2} n_{3}}{2 n_{1} n_{2}+2 n_{2} n_{3}}=\frac{n_{1}-n_{3}}{n_{1}+n_{3}}
\end{aligned}
$$

Clearly, the overall reflection coefficient $E_{0}^{(\mathrm{r})} / E_{0}^{(\mathrm{i})}$ in this case is independent of n_{2}, having the value it would have if the beam was directly incident from free space onto the substrate.

Problem 2) By definition $\rho_{\mathrm{p}}=E_{x 0}^{(\mathrm{r})} / E_{x 0}^{(\mathrm{i})}$. We shall also invoke the generalized form of Snell's law, $k_{x}^{(\mathrm{r})}=k_{x}^{(\mathrm{i})}$, and the dispersion relation $k_{x}^{2}+k_{z}^{2}=(\omega / c)^{2} n_{0}^{2}(\omega)$.
a)

$$
\begin{gathered}
\boldsymbol{k}^{(\mathrm{i})}=n_{0}(\omega)(\omega / c)(\sin \theta \hat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}}) . \\
\boldsymbol{E}_{\mathrm{p}}^{(\mathrm{i})}(\boldsymbol{r}, t)=\left(E_{x 0}^{(\mathrm{i})} \widehat{\boldsymbol{x}}+E_{z 0}^{(\mathrm{i})} \widehat{\mathbf{z}}\right) \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{r}-\omega t\right)\right] .
\end{gathered}
$$

From Maxwell's $1^{\text {st }}$ equation: $\boldsymbol{\nabla} \cdot \boldsymbol{E}=0 \quad \rightarrow \quad \boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{E}_{\mathrm{p}}^{(\mathrm{i})}=0 \quad \rightarrow \quad E_{z 0}^{(\mathrm{i})}=(\tan \theta) E_{x 0}^{(\mathrm{i})}$.
From Maxwell's $3^{\text {rd }}$ equation: $\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t \quad \rightarrow \quad \boldsymbol{k}^{(\mathrm{i})} \times \boldsymbol{E}_{\mathrm{p}}^{(\mathrm{i})}=\mu_{0} \omega \boldsymbol{H}_{0}^{(\mathrm{i})}$

$$
\begin{aligned}
\rightarrow \quad \boldsymbol{H}_{0}^{(\mathrm{i})} & =Z_{0}^{-1} n_{0}(\omega)(\sin \theta \hat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}}) \times\left(E_{x 0}^{(\mathrm{i})} \widehat{\boldsymbol{x}}+E_{z 0}^{(\mathrm{i})} \widehat{\mathbf{z}}\right) \\
& =-Z_{0}^{-1} n_{0}(\omega)\left[\sin \theta E_{z 0}^{(\mathrm{i})}+\cos \theta E_{x 0}^{(\mathrm{i})}\right] \widehat{\boldsymbol{y}} \\
& =-Z_{0}^{-1} n_{0}(\omega) E_{x_{0}}^{(\mathrm{i})} \widehat{\boldsymbol{y}} / \cos \theta \\
& =-Z_{0}^{-1} n_{0}(\omega) E_{\mathrm{p}}^{(\mathrm{i})} \widehat{\boldsymbol{y}} .
\end{aligned}
$$

Consequently, $\boldsymbol{H}^{(\mathrm{i})}(\boldsymbol{r}, t)=\boldsymbol{H}_{0}^{(\mathrm{i})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{r}-\omega t\right)\right]$.
Applying similar procedures to the reflected beam, we find

$$
\begin{gathered}
\boldsymbol{k}^{(\mathrm{r})}=n_{0}(\omega)(\omega / c)(\sin \theta \widehat{\boldsymbol{x}}+\cos \theta \hat{\mathbf{z}}) . \\
\boldsymbol{E}_{\mathrm{p}}^{(\mathrm{r})}(\boldsymbol{r}, t)=\left(E_{x 0}^{(\mathrm{r})} \widehat{\boldsymbol{x}}+E_{z 0}^{(\mathrm{r})} \widehat{\mathbf{z}}\right) \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{r})} \cdot \boldsymbol{r}-\omega t\right)\right] .
\end{gathered}
$$

From Maxwell's $1^{\text {st }}$ equation: $\boldsymbol{\nabla} \cdot \boldsymbol{E}=0 \quad \rightarrow \quad \boldsymbol{k}^{(\mathrm{r})} \cdot \boldsymbol{E}_{\mathrm{p}}^{(\mathrm{r})}=0 \quad \rightarrow \quad E_{z 0}^{(\mathrm{r})}=-(\tan \theta) E_{x 0}^{(\mathrm{r})}$.
From Maxwell's $3^{\text {rd }}$ equation: $\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t \quad \rightarrow \quad \boldsymbol{k}^{(\mathrm{r})} \times \boldsymbol{E}_{\mathrm{p}}^{(\mathrm{r})}=\mu_{0} \omega \boldsymbol{H}_{0}^{(\mathrm{r})}$

$$
\begin{aligned}
\rightarrow \quad \boldsymbol{H}_{0}^{(\mathrm{r})} & =Z_{0}^{-1} n_{0}(\omega)(\sin \theta \widehat{\boldsymbol{x}}+\cos \theta \widehat{\mathbf{z}}) \times\left(E_{x 0}^{(\mathrm{r})} \widehat{\boldsymbol{x}}+E_{z 0}^{(\mathrm{r})} \widehat{\mathbf{z}}\right) \\
& =-Z_{0}^{-1} n_{0}(\omega)\left[\sin \theta E_{z 0}^{(\mathrm{r})}-\cos \theta E_{x 0}^{(\mathrm{r})}\right] \widehat{\boldsymbol{y}} \\
& =Z_{0}^{-1} n_{0}(\omega) E_{x_{0}}^{(\mathrm{r})} \widehat{\boldsymbol{y}} / \cos \theta \\
& =Z_{0}^{-1} n_{0}(\omega) \rho_{\mathrm{p}} E_{x_{0}}^{(\mathrm{i})} \widehat{\boldsymbol{y}} / \cos \theta \\
& =Z_{0}^{-1} n_{0}(\omega) \rho_{\mathrm{p}} E_{\mathrm{p}}^{(\mathrm{i})} \widehat{\boldsymbol{y}} .
\end{aligned}
$$

Consequently, $\boldsymbol{H}^{(\mathrm{r})}(\boldsymbol{r}, t)=\boldsymbol{H}_{0}^{(\mathrm{r})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{r})} \cdot \boldsymbol{r}-\omega t\right)\right]$.
b) $\left\langle\boldsymbol{S}^{(\mathrm{i})}(\boldsymbol{r}, t)\right\rangle=1 / 2 \operatorname{Re}\left\{\boldsymbol{E}_{\mathrm{p}}^{(\mathrm{i})} \times \boldsymbol{H}_{0}^{*(\mathrm{i})}\right\}=-1 / 2 Z_{0}^{-1} n_{0}(\omega) \operatorname{Re}\left\{E_{\mathrm{p}}^{(\mathrm{i})}(\cos \theta \widehat{\boldsymbol{x}}+\sin \theta \widehat{\boldsymbol{z}}) \times E_{\mathrm{p}}^{*(\mathrm{i})} \widehat{\boldsymbol{y}}\right\}$

$$
\begin{aligned}
& =1 / 2 Z_{0}^{-1} n_{0}(\omega)\left|E_{\mathrm{p}}^{(\mathrm{i})}\right|^{2}(\sin \theta \widehat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}}) \\
& =1 / 2 Z_{0}^{-1} n_{0}(\omega)\left|E_{\mathrm{p}}^{(\mathrm{i})}\right|^{2} \widehat{\boldsymbol{k}}^{(\mathrm{i})}
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\boldsymbol{S}^{(\mathrm{r})}(\boldsymbol{r}, t)\right\rangle=1 / 2 \operatorname{Re}\left\{\boldsymbol{E}_{\mathrm{p}}^{(\mathrm{r})} \times \boldsymbol{H}_{0}^{*(\mathrm{r})}\right\} & =1 / 2 Z_{0}^{-1} n_{0}(\omega) \operatorname{Re}\left\{\rho_{\mathrm{p}} E_{\mathrm{p}}^{(\mathrm{i})}(\cos \theta \widehat{\boldsymbol{x}}-\sin \theta \widehat{\mathbf{z}}) \times \rho_{\mathrm{p}}^{*} E_{\mathrm{p}}^{*(\mathrm{i})} \widehat{\boldsymbol{y}}\right\} \\
& =1 / 2 Z_{0}^{-1} n_{0}(\omega)\left|\rho_{\mathrm{p}} E_{\mathrm{p}}^{(\mathrm{i})}\right|^{2}(\sin \theta \widehat{\boldsymbol{x}}+\cos \theta \hat{\mathbf{z}}) \\
& =1 / 2 Z_{0}^{-1} n_{0}(\omega)\left|\rho_{\mathrm{p}}\right|^{2}\left|E_{\mathrm{p}}^{(\mathrm{i})}\right|^{2} \widehat{\boldsymbol{k}}^{(\mathrm{r})}
\end{aligned}
$$

The time-averaged Poynting vectors of the incident and reflected beams are seen to be along the corresponding directions of propagation. The rate of flow of energy of the reflected beam is that of the incident beam multiplied by $\left|\rho_{\mathrm{p}}\right|^{2}$. The phase φ_{p} of the Fresnel reflection coefficient does not affect the reflectance of optical energy at the interface between the two media.

Problem 3) a) For the transmitted beam, the continuity of k_{x} yields $k_{x}^{(\mathrm{t})}=k_{x}^{(\mathrm{i})}=(\omega / c) n_{0} \sin \theta$. Also, the E-field amplitude immediately beneath the interface will be $\boldsymbol{E}_{\mathrm{s}}^{(\mathrm{t})}=\tau_{\mathrm{s}} E_{\mathrm{s}}^{(\mathrm{i})} \widehat{\boldsymbol{y}}$. Thus,

$$
\begin{gathered}
\boldsymbol{k}^{(\mathrm{t})}=k_{x} \widehat{\boldsymbol{x}}+k_{z}^{(\mathrm{t})} \widehat{\mathbf{z}}=(\omega / c)\left[n_{0} \sin \theta \hat{\boldsymbol{x}}-\sqrt{(n+\mathrm{i} \kappa)^{2}-n_{0}^{2} \sin ^{2} \theta} \hat{\mathbf{z}}\right] . \\
\boldsymbol{E}^{(\mathrm{t})}(\boldsymbol{r}, t)=\tau_{s} E_{s}^{(\mathrm{i})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{t})} \cdot \boldsymbol{r}-\omega t\right)\right] \widehat{\boldsymbol{y}} .
\end{gathered}
$$

The square root must be chosen such that the imaginary part of $k_{z}^{(\mathrm{t})}$ is negative, so that the field amplitude will decay exponentially as $z \rightarrow-\infty$.

From Maxwell's $3^{\text {rd }}$ equation: $\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t \quad \rightarrow \quad \boldsymbol{k}^{(\mathrm{t})} \times \tau_{s} \boldsymbol{E}_{s}^{(\mathrm{i})}=\mu_{0} \omega \boldsymbol{H}_{0}^{(\mathrm{t})}$

$$
\begin{aligned}
\rightarrow \quad \boldsymbol{H}_{0}^{(\mathrm{t})} & =Z_{0}^{-1}\left[n_{0} \sin \theta \widehat{\boldsymbol{x}}-\sqrt{(n+\mathrm{i} \kappa)^{2}-n_{0}^{2} \sin ^{2} \theta} \hat{\mathbf{z}}\right] \times \tau_{\mathbf{s}} E_{\mathrm{s}}^{(\mathrm{i})} \widehat{\boldsymbol{y}} \\
& =Z_{0}^{-1} \tau_{\mathrm{s}} E_{\mathrm{s}}^{(\mathrm{i})}\left[\sqrt{(n+\mathrm{i} \kappa)^{2}-n_{0}^{2} \sin ^{2} \theta} \widehat{\boldsymbol{x}}+n_{0} \sin \theta \hat{\mathbf{z}}\right] .
\end{aligned}
$$

Consequently, $\boldsymbol{H}^{(\mathrm{t})}(\boldsymbol{r}, t)=\boldsymbol{H}_{0}^{(\mathrm{t})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{t})} \cdot \boldsymbol{r}-\omega t\right)\right]$.
b) $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle=1 / 2 \operatorname{Re}\left\{\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}^{*}(\boldsymbol{r}, t)\right\}$

$$
\begin{aligned}
=1 / 2 \operatorname{Re} & \left\{\tau_{s} E_{s}^{(\mathrm{i})} \exp \left[\mathrm{i}\left(k_{x} x+k_{z}^{(\mathrm{t})} z\right)\right] \hat{\boldsymbol{y}}\right. \\
& \left.\times Z_{0}^{-1} \tau_{\mathrm{s}}^{*} E_{\mathrm{s}}^{* \mathrm{i})}\left[\sqrt{(n+\mathrm{i} \kappa)^{2}-n_{0}^{2} \sin ^{2} \theta} * \hat{\boldsymbol{x}}+n_{0} \sin \theta \hat{\mathbf{z}}\right] \exp \left[-\mathrm{i}\left(k_{x} x+k_{z}^{*(\mathrm{t})} z\right)\right]\right\} \\
=1 / 2 Z_{0}^{-1} \mid & \left.\tau_{\mathrm{s}} E_{\mathrm{s}}^{(\mathrm{i})}\right|^{2}\left[n_{0} \sin \theta \hat{\boldsymbol{x}}-\operatorname{Re} \sqrt{(n+\mathrm{i} \kappa)^{2}-n_{0}^{2} \sin ^{2} \theta} \hat{\mathbf{z}}\right] \exp \left\{-2 \operatorname{Im}\left[k_{z}^{(\mathrm{t})}\right] z\right\} .
\end{aligned}
$$

As pointed out earlier, $\operatorname{Im}\left[k_{z}^{(\mathrm{t})}\right]$ is negative and, therefore, $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ decays exponentially as $z \rightarrow-\infty$.

Problem 4) The magnetization distribution $\boldsymbol{M}(\boldsymbol{r}, t)$ does not produce any (bound) electrical charges. Therefore $\rho_{\text {bound }}^{(e)}(\boldsymbol{r}, t)=0$. The absence of electrical charge implies that the scalar potential (in the Lorenz gauge) is also absent in this problem, that is, $\psi(r, t)=0$.

Since this is a magnetostatic problem (i.e., the magnetization is time-independent), the bound electric current-density $\boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{r}, t)$ and, consequently, the vector potential $\boldsymbol{A}(\boldsymbol{r}, t)$, will also be time-independent. As a result, we will have $\boldsymbol{E}(\boldsymbol{r}, t)=-\boldsymbol{\nabla} \psi(\boldsymbol{r}, t)-\partial \boldsymbol{A}(\boldsymbol{r}, t) / \partial t=0$.
a)

$$
\begin{aligned}
\boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{r}, t) & =\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}(\boldsymbol{r}, t)=\mu_{0}^{-1} \boldsymbol{\nabla} \times\left[m_{0} \delta(x) \delta(y) \hat{\mathbf{z}}\right] \\
& =\mu_{0}^{-1} m_{0}\left[\delta(x) \delta^{\prime}(y) \widehat{\boldsymbol{x}}-\delta^{\prime}(x) \delta(y) \widehat{\boldsymbol{y}}\right]
\end{aligned}
$$

b) The symmetry of the problem allows us to choose the observation point \boldsymbol{r} as an arbitrary point in the $x y$-plane, where $z=0$. In other words, $\boldsymbol{r}=x \widehat{\boldsymbol{x}}+y \widehat{\boldsymbol{y}}$. Also, since the current-density is time independent, the term $t-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| / c$ can be dropped from the vector potential formula. We will have

$$
\boldsymbol{A}(\boldsymbol{r})=\frac{\mu_{0}}{4 \pi} \iiint_{-\infty}^{\infty} \frac{\boldsymbol{J}_{\text {bound }}^{(e)}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} \boldsymbol{r}^{\prime}=\frac{m_{0}}{4 \pi} \iiint_{-\infty}^{\infty} \frac{\delta\left(x^{\prime}\right) \delta^{\prime}\left(y^{\prime}\right) \widehat{\boldsymbol{x}}-\delta^{\prime}\left(x^{\prime}\right) \delta\left(y^{\prime}\right) \hat{\boldsymbol{y}}}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{\prime 2}}} \mathrm{~d} x^{\prime} \mathrm{d} y^{\prime} \mathrm{d} z^{\prime}
$$

$$
\begin{array}{|c}
\begin{array}{c}
\text { Sifting property of } \\
\delta\left(x^{\prime}\right) \text { and } \delta\left(y^{\prime}\right)
\end{array}
\end{array} \rightarrow=\frac{m_{0}}{4 \pi}\left[\widehat{\boldsymbol{x}} \iint_{-\infty}^{\infty} \frac{\delta^{\prime}\left(y^{\prime}\right)}{\sqrt{x^{2}+\left(y-y^{\prime}\right)^{2}+z^{\prime 2}}} \mathrm{~d} y^{\prime} \mathrm{d} z^{\prime}-\widehat{\boldsymbol{y}} \iint_{-\infty}^{\infty} \frac{\delta^{\prime}\left(x^{\prime}\right)}{\sqrt{\left(x-x^{\prime}\right)^{2}+y^{2}+z^{\prime 2}}} \mathrm{~d} x^{\prime} \mathrm{d} z^{\prime}\right]
$$

$$
\begin{array}{|c}
\text { Sifting property of } \\
\delta^{\prime}\left(x^{\prime}\right) \text { and } \delta^{\prime}\left(y^{\prime}\right)
\end{array} \rightarrow=\frac{m_{0}}{4 \pi}\left[-\widehat{\boldsymbol{x}} \int_{-\infty}^{\infty} \frac{y}{\left(x^{2}+y^{2}+z^{\prime 2}\right)^{3 / 2}} \mathrm{~d} z^{\prime}+\widehat{\boldsymbol{y}} \int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+y^{2}+z^{\prime 2}\right)^{3 / 2}} \mathrm{~d} z^{\prime}\right]
$$

$$
\begin{aligned}
& =\frac{m_{0}}{2 \pi}(-y \widehat{\boldsymbol{x}}+x \widehat{\boldsymbol{y}}) \int_{0}^{\infty} \frac{\mathrm{d} z^{\prime}}{\left(x^{2}+y^{2}+z^{\prime 2}\right)^{3 / 2}}=\left.\frac{m_{0}}{2 \pi}(-y \widehat{\boldsymbol{x}}+x \widehat{\boldsymbol{y}}) \frac{z^{\prime}}{\left(x^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}+z^{\prime 2}}}\right|_{z^{\prime}=0} ^{\infty} \\
& =\frac{m_{0}}{2 \pi}\left(\frac{x \hat{\boldsymbol{y}}-y \widehat{x}}{x^{2}+y^{2}}\right)=\left(\frac{m_{0}}{2 \pi}\right) \frac{\hat{\mathbf{z}} \times(x \widehat{x}+y \widehat{\boldsymbol{y}})}{x^{2}+y^{2}}=\left(\frac{m_{0}}{2 \pi}\right) \frac{\hat{\boldsymbol{z}} \times \boldsymbol{r}}{r^{2}}=\frac{m_{0} \widehat{\phi}}{2 \pi r} . \leftarrow \text { cylindrical coordinates }
\end{aligned}
$$

c)

$$
\boldsymbol{B}(\boldsymbol{r}, t)=\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r}, t)=-\frac{\partial A_{\phi}}{\partial z} \hat{\boldsymbol{r}}+\frac{\partial\left(r A_{\phi}\right)}{r \partial r} \hat{\mathbf{z}}=\frac{\partial\left(m_{0} / 2 \pi\right)}{r \partial r} \hat{\mathbf{z}}=0
$$

The B-field, and also the H-field, are thus seen to be zero everywhere outside the wireeven though the vector potential is not zero. Note that on the z-axis itself, the curl of $\boldsymbol{A}(\boldsymbol{r})$ is not zero. Using the definition of $\operatorname{Curl}(\boldsymbol{\nabla} \times)$ as the integral of $\boldsymbol{A}(\boldsymbol{r})$ around a small loop, normalized by the loop area, the B-field inside the wire is readily found to be $m_{0} \delta(x) \delta(y) \hat{\mathbf{z}}$. This is simply the magnetization $\boldsymbol{M}(\boldsymbol{r})$ of the wire. Considering that $\boldsymbol{B}=\mu_{0} \boldsymbol{H}+\boldsymbol{M}$, we conclude that the H field inside the wire is zero as well.

