Opti 501 Final Exam Solutions 12/13/2016

Problem 1)

a) p1z = (g —ny)/(ny +1ny), Ty = 2ny/(ny + np).
p21 = (N —ny)/(ny +ny) = —pya, Ty1 = 213/ (ny + ny).
P23 = (N —n3)/(n; + n3) = (n; —n —ix)/(n; + n +ix), T3 = 2ny/(n; + n3).

b) Immediately beneath the entrance facet, Eéa) receives a contribution from Eéi) via the
transmission coefficient 7,. A second contribution comes from E(gb) upon reflection at the upper

dielectric surface (reflection coefficient = p,,). However, E(gb) itself is obtained from E((,a) after a
downward propagation through the thickness d, reflection at the substrate interface (reflection
coefficient = p,3), and an upward propagation, again through the thickness d. The self-
consistency equation for Eéa) may thus be written as follows:

c) The E-field amplitude transmitted into the substrate is obtained by propagating E((,a)
downward through the thickness d, then multiplying by 7,3 to account for transmission from
immediately above to immediately below the dielectric-substrate interface. We will have

E(a) _ TiaTazexp(i2rmnyd/Ag) )
o =

® _ ;
EO ~ Tz3 exp(lnzkod) 1 - p21pas exp(idmnyd/Ae) 0

d) The reflected E-field amplitude at the top of the dielectric layer has two contributions. The
first comes from direct reflection from the top facet of the incident amplitude Eél). The second
contribution comes from Eéb) after multiplication by 7,,. However, E(gb) itself arises from the

propagation of Eéa) downward through the thickness d, reflection at the substrate interface, then
upward propagation through the thickness d of the dielectric layer. We will have

E(gr) = P1zE(§i) + 721023 exp(2iny ko d) E(ga)

T12T21P23 expinykod) | () _ [P12 + (T12721=P12P21)P23 eXP(Zinzkod)] E(i)
= o -

= + - -
[plz 1 - pa1p23 exp(ingkod)] 0 1 = p21p23 exp(2ingkod)

Now, using the expressions for p;,, T12, P21, T21 Obtained in part (a), we write

Anyn; (ny—ny)* _
(n1+n3)2 ° (ny+ny)? =10

T12T21 — P12P21 =

Consequently,

E® — Pizt pazexp(idnnyd/io) ()
0 1+ p12p23 exp(idmnyd/Ae) 0

For a given refractive index n,, the thickness d of the dielectric layer can be adjusted to
control the reflectance of the bare substrate.

e) When d =ma,/(2n,), the phase-factor exp(i4mn,d/A,) appearing in the preceding
equation becomes equal to 1.0. We will then have
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() oy
E(r)/E(i) __ P12t P23 _ \ni+n; np+nz) _ (M—ny)(ny+nz)+(ny—nz)(ng+ny)
0 0

1+ - (—nl_"z)(—nz_"3) T (ny+np)(na+n3)+(ny—ny)(np—n
P12P23 1+ nying)\nprns (n1+nz)(n2+n3)+(M1—nz)(nz—n3)

NNy +N N3 —N5—Ny N3 +N N +N5—NyN3—NoN3 _ 2NNy —2Npn3 Ny — N3

NN+ Nz +nZ+nyng+niny,—nynz—nZ+nyng  2niny+2n,n3 N +ns

Clearly, the overall reflection coefficient Eér) / Eéi) in this case is independent of n,, having
the value it would have if the beam was directly incident from free space onto the substrate.

Problem 2) By definition p, = E)Ef)) /E,Eig. We shall also invoke the generalized form of Snell’s
law, k,(cr) = k,(ci), and the dispersion relation k2 + kZ = (w/c)?*n3(w).
a) kD = ny(w)(w/c)(sin X — cos 6 2).
EY(rt) = (E9x + EQ2) expli(k® -7 - wt)].
From Maxwell’s 1% equation: V-E=0 - kW. Eg) =0 - EZ(L) = (tan H)ESO).
From Maxwell’s 3 equation: V x E = —0B/dt - k® x Eg) = /,Loa)Hgi)
- Hgi) = Zyny(w)(sin@ x — cos 0 2) X (E,Eig;’\c\ + Ez(gﬁ)

= —Z5'no(w)[sin6 EY + cos 0 EVy

=—Z;n, (w)ESO)?/cos 0

= —Z5 'np(w)E5.
Consequently, HO (r,t) = HY exp[i(k© - r — wt)].
Applying similar procedures to the reflected beam, we find

k™ = ny(w)(w/c)(sin@ % + cos 6 2).
EY(r,6) = (EQ% + EQz) expli(k® - 7 — wt)].
From Maxwell’s 1% equation: V-E=0 - k®-EP =0 - EJY =—(tang)ES.
From Maxwell’s 3" equation: VX E =—0B/dt - k® x Eg) = powHY
- ng) = Z;ng(w)(sin@ X + cos 6 2) X (E)Ef))i? + Ez(g)ﬁ)

= —Z5'no(0)[sin 6 E) — cos 6 EDyp

= Zy'n, (a))E,E??/cos 0

= Z5'no(w)ppEY 9/ cos 6

= Z5'no(@)ppEy 9.
Consequently, H® (r,t) = H” exp [i(k®™ -7 — wt)].
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b) (SO, 1)) = %Re(EY x HyV} = —1675no(w)Re{ES (cos 6 % + sin 6 2) x E; 3}
—17-1 D% cin g = R
= 7, no(w)|Ep | (sin@x — cos 0 2)
N2,
= 175 ng(w)|EP| &D.
(SO, b)) = %Re{EI()r) x H\"} = %2510, (a))Re{ppES)(cos X —sinf2) x png;(i)?}
N2
= 1/nglno(a))|ppEI()1)| (sin@ X + cos 0 2)
N2
= %Z5 o (w)|pp P |EL | &,
The time-averaged Poynting vectors of the incident and reflected beams are seen to be along
the corresponding directions of propagation. The rate of flow of energy of the reflected beam is

that of the incident beam multiplied by | pplz. The phase ¢, of the Fresnel reflection coefficient
does not affect the reflectance of optical energy at the interface between the two media.

Problem 3) a) For the transmitted beam, the continuity of k, yields k,(ct) = kj(ci) = (w/c)nysin .
Also, the E-field amplitude immediately beneath the interface will be E gt) = TSES(I)?. Thus,

K©® =k.x+ k;t)ﬁ = (w/c)[ngsin6 % — J(n +ix)2 —n2 sin2 0 2]
EO@r, o) = r,EY exp[i(k® - r — wt)] .

The square root must be chosen such that the imaginary part of két) 1S negative, so that the
field amplitude will decay exponentially as z = —oo.

From Maxwell’s 3 equation: VX E = —dB/0dt - k® x TSES) = yOwH(()t)

- Hgt) =75 nysino % — J(n +ik)2 —n2sin2 0 2| x TSES(D?

= Z; 1, EQ [ (n + iK)? — nZsin? 6 % + ng sin 6 2]
Consequently, HV(r,t) = H gt) exp[i(k® - — wt)].
b) (S(r,t)) = %Re{E(r,t) X H* (r,t)}
= 14Re {TSES(D expli(k,x + k;t)z)] y

: *
x ZylrtEr® [\/(n +ik)?2 —n3sin2f X+ ngsinb 2] exp[—i(k,x + k;(t)z)]}

= 1/220_1|‘L'SES® |2[n0 sin@ % — Rey/(n + ik)? — n2 sin? 6 2] exp{—2Im[kP]z}-

As pointed out earlier, Im[két)] is negative and, therefore, (S(r,t)) decays exponentially as
Z > —o00,




Problem 4) The magnetization distribution M(r,t) does not produce any (bound) electrical

charges. Therefore pbound(r, t) = 0. The absence of electrical charge implies that the scalar
potential (in the Lorenz gauge) is also absent in this problem, that is, ¥ (r, t) = 0.
Since this is a magnetostatic problem (i.e., the magnetization is time-independent), the

bound electric current-density ]bound(r, t) and, consequently, the vector potential A(r,t), will
also be time-independent. As a result, we will have E(r,t) = =V (r,t) — dA(r,t)/dt = 0.

a) JEar D) = ug 'V x M(r,t) = gV X [mo8(x)5(y)2]
= 11y 'my[8(x)8' (X = 8’ ()6 ()]

b) The symmetry of the problem allows us to choose the observation point r as an arbitrary point
in the xy-plane, where z = 0. In other words, r = xX + yy. Also, since the current-density is

time independent, the term t — |r — r'|/c can be dropped from the vector potential formula. We
will have

(e) ’
_ o Toouna () 4. 3(x"e' vz - S(x'm(y')y Pyt 4o
Aw—mfff_w o -2 ] SRt arey

Sifting property of mo | ~ §'(y' ;o @ §'(x" Ve
7 ! > = — -
6(x") and 6(y") 4m x o VX2 (y—y')2 422 dy dz Y oV (x=x")2+y2+2"2 dx'dz

Sifting property of mo| ~ @ y o~ ® x '
’ ’ 1] ’ >=—|— PRI 21 2.1203/2
S (x ) and § (y ) 41T X . (xz+yz+zrz)3/2 dz’ + y o (xz+yz+zrz)3/2 dz

[o9)

- 27_[( yx"’x}’)j; (x2+y2+212)3/2 - 21_[( yx"'x}’)

(x2+y2)\/x24+y2+2'2 4=

— o (xy - yj‘\) — (@) ZX(x+yy) _ (@) Zxr _mod <—| cylindrical coordinates|
21

x2 +y2 27 x2 +y2 2/ 12 2nr
0Agp . 0(rdg) d(mgy/2m) A
¢ ¢ 0
= X = —— = = V.
C) B(r,t) =V x A(r,t) o, Tt— 2 = 2=0

The B-field, and also the H-field, are thus seen to be zero everywhere outside the wire—
even though the vector potential is not zero. Note that on the z-axis itself, the curl of A(r) is not
zero. Using the definition of Curl (V X) as the integral of A(r) around a small loop, normalized
by the loop area, the B-field inside the wire is readily found to be my&(x)S(y)2. This is simply
the magnetization M(r) of the wire. Considering that B = uyH + M, we conclude that the H-
field inside the wire is zero as well.




