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Opti 501 Final Exam Solutions 12/13/2016 

Problem 1) 

a) 𝜌𝜌12 = (𝑛𝑛1 − 𝑛𝑛2) (𝑛𝑛1 + 𝑛𝑛2)⁄ , 𝜏𝜏12 = 2𝑛𝑛1 (𝑛𝑛1 + 𝑛𝑛2)⁄ . 

 𝜌𝜌21 = (𝑛𝑛2 − 𝑛𝑛1) (𝑛𝑛2 + 𝑛𝑛1)⁄ = −𝜌𝜌12, 𝜏𝜏21 = 2𝑛𝑛2 (𝑛𝑛2 + 𝑛𝑛1)⁄ . 

 𝜌𝜌23 = (𝑛𝑛2 − 𝑛𝑛3) (𝑛𝑛2 + 𝑛𝑛3)⁄ = (𝑛𝑛2 − 𝑛𝑛 − i𝜅𝜅) (𝑛𝑛2 + 𝑛𝑛 + i𝜅𝜅)⁄ , 𝜏𝜏23 = 2𝑛𝑛2 (𝑛𝑛2 + 𝑛𝑛3)⁄ . 

b) Immediately beneath the entrance facet, 𝐸𝐸0
(a) receives a contribution from 𝐸𝐸0

(i) via the 
transmission coefficient 𝜏𝜏12. A second contribution comes from 𝐸𝐸0

(b) upon reflection at the upper 
dielectric surface (reflection coefficient = 𝜌𝜌21). However, 𝐸𝐸0

(b) itself is obtained from 𝐸𝐸0
(a) after a 

downward propagation through the thickness 𝑑𝑑, reflection at the substrate interface (reflection 
coefficient = 𝜌𝜌23), and an upward propagation, again through the thickness 𝑑𝑑. The self-
consistency equation for 𝐸𝐸0

(a) may thus be written as follows: 

 𝐸𝐸0
(a) = 𝜏𝜏12𝐸𝐸0

(i) + 𝜌𝜌21𝜌𝜌23 exp(2i𝑛𝑛2𝑘𝑘0𝑑𝑑)𝐸𝐸0
(a)     →        𝐸𝐸0

(a) = 𝜏𝜏12
1 − 𝜌𝜌21𝜌𝜌23 exp(i4𝜋𝜋𝑛𝑛2𝑑𝑑 𝜆𝜆0⁄ )𝐸𝐸0

(i)· 

c) The 𝐸𝐸-field amplitude transmitted into the substrate is obtained by propagating 𝐸𝐸0
(a) 

downward through the thickness 𝑑𝑑, then multiplying by 𝜏𝜏23 to account for transmission from 
immediately above to immediately below the dielectric-substrate interface. We will have 

 𝐸𝐸0
(t) = 𝜏𝜏23 exp(i𝑛𝑛2𝑘𝑘0𝑑𝑑)𝐸𝐸0

(a) = 𝜏𝜏12𝜏𝜏23 exp(i2𝜋𝜋𝑛𝑛2𝑑𝑑 𝜆𝜆0⁄ )
1 − 𝜌𝜌21𝜌𝜌23 exp(i4𝜋𝜋𝑛𝑛2𝑑𝑑 𝜆𝜆0⁄ )𝐸𝐸0

(i). 

d) The reflected 𝐸𝐸-field amplitude at the top of the dielectric layer has two contributions. The 
first comes from direct reflection from the top facet of the incident amplitude 𝐸𝐸0

(i). The second 
contribution comes from 𝐸𝐸0

(b) after multiplication by 𝜏𝜏21. However, 𝐸𝐸0
(b) itself arises from the 

propagation of 𝐸𝐸0
(a) downward through the thickness 𝑑𝑑, reflection at the substrate interface, then 

upward propagation through the thickness 𝑑𝑑 of the dielectric layer. We will have 

 𝐸𝐸0
(r) = 𝜌𝜌12𝐸𝐸0

(i) + 𝜏𝜏21𝜌𝜌23 exp(2i𝑛𝑛2𝑘𝑘0𝑑𝑑)𝐸𝐸0
(a) 

 = �𝜌𝜌12 + 𝜏𝜏12𝜏𝜏21𝜌𝜌23 exp(2i𝑛𝑛2𝑘𝑘0𝑑𝑑)
1 − 𝜌𝜌21𝜌𝜌23 exp(2i𝑛𝑛2𝑘𝑘0𝑑𝑑)� 𝐸𝐸0

(i) = �𝜌𝜌12 + (𝜏𝜏12𝜏𝜏21−𝜌𝜌12𝜌𝜌21)𝜌𝜌23 exp(2i𝑛𝑛2𝑘𝑘0𝑑𝑑)
1 − 𝜌𝜌21𝜌𝜌23 exp(2i𝑛𝑛2𝑘𝑘0𝑑𝑑) � 𝐸𝐸0

(i). 
 
Now, using the expressions for 𝜌𝜌12, 𝜏𝜏12, 𝜌𝜌21, 𝜏𝜏21 obtained in part (a), we write 

 𝜏𝜏12𝜏𝜏21 − 𝜌𝜌12𝜌𝜌21 = 4𝑛𝑛1𝑛𝑛2
(𝑛𝑛1+𝑛𝑛2)2 + (𝑛𝑛1−𝑛𝑛2)2

(𝑛𝑛1+𝑛𝑛2)2 = 1.0 

Consequently, 

 𝐸𝐸0
(r) = 𝜌𝜌12 + 𝜌𝜌23 exp(i4𝜋𝜋𝑛𝑛2𝑑𝑑 𝜆𝜆0⁄ )

1 + 𝜌𝜌12𝜌𝜌23 exp(i4𝜋𝜋𝑛𝑛2𝑑𝑑 𝜆𝜆0⁄ )𝐸𝐸0
(i). 

For a given refractive index 𝑛𝑛2, the thickness 𝑑𝑑 of the dielectric layer can be adjusted to 
control the reflectance of the bare substrate. 

e) When 𝑑𝑑 = 𝑚𝑚𝜆𝜆0 (2𝑛𝑛2)⁄ , the phase-factor exp(i4𝜋𝜋𝑛𝑛2𝑑𝑑 𝜆𝜆0⁄ ) appearing in the preceding 
equation becomes equal to 1.0. We will then have 



2 
 

 𝐸𝐸0
(r) 𝐸𝐸0

(i)� = 𝜌𝜌12 + 𝜌𝜌23
1 + 𝜌𝜌12𝜌𝜌23

=
�𝑛𝑛1−𝑛𝑛2𝑛𝑛1+𝑛𝑛2

� + �𝑛𝑛2−𝑛𝑛3𝑛𝑛2+𝑛𝑛3
�

1+�𝑛𝑛1−𝑛𝑛2𝑛𝑛1+𝑛𝑛2
��𝑛𝑛2−𝑛𝑛3𝑛𝑛2+𝑛𝑛3

�
= (𝑛𝑛1−𝑛𝑛2)(𝑛𝑛2+𝑛𝑛3)+(𝑛𝑛2−𝑛𝑛3)(𝑛𝑛1+𝑛𝑛2)

(𝑛𝑛1+𝑛𝑛2)(𝑛𝑛2+𝑛𝑛3)+(𝑛𝑛1−𝑛𝑛2)(𝑛𝑛2−𝑛𝑛3) 

 = 𝑛𝑛1𝑛𝑛2+𝑛𝑛1𝑛𝑛3−𝑛𝑛22−𝑛𝑛2𝑛𝑛3+𝑛𝑛1𝑛𝑛2+𝑛𝑛22−𝑛𝑛1𝑛𝑛3−𝑛𝑛2𝑛𝑛3
𝑛𝑛1𝑛𝑛2+𝑛𝑛1𝑛𝑛3+𝑛𝑛22+𝑛𝑛2𝑛𝑛3+𝑛𝑛1𝑛𝑛2−𝑛𝑛1𝑛𝑛3−𝑛𝑛22+𝑛𝑛2𝑛𝑛3

= 2𝑛𝑛1𝑛𝑛2−2𝑛𝑛2𝑛𝑛3
2𝑛𝑛1𝑛𝑛2+2𝑛𝑛2𝑛𝑛3

= 𝑛𝑛1 − 𝑛𝑛3
𝑛𝑛1 + 𝑛𝑛3

· 

Clearly, the overall reflection coefficient 𝐸𝐸0
(r) 𝐸𝐸0

(i)�  in this case is independent of 𝑛𝑛2, having 
the value it would have if the beam was directly incident from free space onto the substrate. 
 
Problem 2) By definition 𝜌𝜌p = 𝐸𝐸𝑥𝑥0

(r)/𝐸𝐸𝑥𝑥0
(i). We shall also invoke the generalized form of Snell’s 

law, 𝑘𝑘𝑥𝑥
(r) = 𝑘𝑘𝑥𝑥

(i), and the dispersion relation 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑧𝑧2 = (𝜔𝜔 𝑐𝑐⁄ )2𝑛𝑛02(𝜔𝜔). 

a) 𝒌𝒌(i) = 𝑛𝑛0(𝜔𝜔)(𝜔𝜔 𝑐𝑐⁄ )(sin𝜃𝜃 𝒙𝒙� − cos 𝜃𝜃 𝒛𝒛�). 

 𝑬𝑬p
(i)(𝒓𝒓, 𝑡𝑡) = �𝐸𝐸𝑥𝑥0

(i)𝒙𝒙� + 𝐸𝐸𝑧𝑧0
(i)𝒛𝒛�� exp�i�𝒌𝒌(i) ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔��. 

From Maxwell’s 1st equation: 𝜵𝜵 ∙ 𝑬𝑬 = 0     →      𝒌𝒌(i) ∙ 𝑬𝑬p
(i) = 0      →        𝐸𝐸𝑧𝑧0

(i) = (tan𝜃𝜃)𝐸𝐸𝑥𝑥0
(i). 

From Maxwell’s 3rd equation: 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝜕𝜕⁄     →      𝒌𝒌(i) × 𝑬𝑬p
(i) = 𝜇𝜇0𝜔𝜔𝑯𝑯0

(i) 

 →      𝑯𝑯0
(i) = 𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)(sin𝜃𝜃 𝒙𝒙� − cos 𝜃𝜃 𝒛𝒛�) × (𝐸𝐸𝑥𝑥0

(i)𝒙𝒙� + 𝐸𝐸𝑧𝑧0
(i)𝒛𝒛�) 

 = −𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)[sin𝜃𝜃 𝐸𝐸𝑧𝑧0
(i) + cos𝜃𝜃 𝐸𝐸𝑥𝑥0

(i)]𝒚𝒚� 

 = −𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)𝐸𝐸𝑥𝑥0
(i)𝒚𝒚� cos 𝜃𝜃⁄  

 = −𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)𝐸𝐸p
(i)𝒚𝒚�. 

Consequently, 𝑯𝑯(i)(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯0
(i) exp�i�𝒌𝒌(i) ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔��. 

Applying similar procedures to the reflected beam, we find 

 𝒌𝒌(r) = 𝑛𝑛0(𝜔𝜔)(𝜔𝜔 𝑐𝑐⁄ )(sin𝜃𝜃 𝒙𝒙� + cos 𝜃𝜃 𝒛𝒛�). 

 𝑬𝑬p
(r)(𝒓𝒓, 𝑡𝑡) = �𝐸𝐸𝑥𝑥0

(r)𝒙𝒙� + 𝐸𝐸𝑧𝑧0
(r)𝒛𝒛�� exp�i�𝒌𝒌(r) ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔��. 

From Maxwell’s 1st equation: 𝜵𝜵 ∙ 𝑬𝑬 = 0     →     𝒌𝒌(r) ∙ 𝑬𝑬p
(r) = 0   →     𝐸𝐸𝑧𝑧0

(r) = −(tan𝜃𝜃)𝐸𝐸𝑥𝑥0
(r). 

From Maxwell’s 3rd equation: 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝜕𝜕⁄     →      𝒌𝒌(r) × 𝑬𝑬p
(r) = 𝜇𝜇0𝜔𝜔𝑯𝑯0

(r) 

 →      𝑯𝑯0
(r) = 𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)(sin𝜃𝜃 𝒙𝒙� + cos 𝜃𝜃 𝒛𝒛�) × (𝐸𝐸𝑥𝑥0

(r)𝒙𝒙� + 𝐸𝐸𝑧𝑧0
(r)𝒛𝒛�) 

 = −𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)[sin𝜃𝜃 𝐸𝐸𝑧𝑧0
(r) − cos 𝜃𝜃 𝐸𝐸𝑥𝑥0

(r)]𝒚𝒚� 

 = 𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)𝐸𝐸𝑥𝑥0
(r)𝒚𝒚� cos 𝜃𝜃⁄  

 = 𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)𝜌𝜌p𝐸𝐸𝑥𝑥0
(i)𝒚𝒚� cos 𝜃𝜃⁄  

 = 𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)𝜌𝜌p𝐸𝐸p
(i)𝒚𝒚�. 

Consequently, 𝑯𝑯(r)(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯0
(r) exp�i�𝒌𝒌(r) ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔��. 
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b) 〈𝑺𝑺(i)(𝒓𝒓, 𝑡𝑡)〉 = ½Re�𝑬𝑬p
(i) × 𝑯𝑯0

∗(i)� = −½𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)Re�𝐸𝐸p
(i)(cos 𝜃𝜃 𝒙𝒙� + sin𝜃𝜃 𝒛𝒛�) × 𝐸𝐸p

∗(i)𝒚𝒚�� 

 = ½𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)�𝐸𝐸p
(i)�

2
(sin𝜃𝜃 𝒙𝒙� − cos 𝜃𝜃 𝒛𝒛�) 

 = ½𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)�𝐸𝐸p
(i)�

2
𝒌𝒌�(i). 

 〈𝑺𝑺(r)(𝒓𝒓, 𝑡𝑡)〉 = ½Re�𝑬𝑬p
(r) × 𝑯𝑯0

∗(r)� = ½𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)Re�𝜌𝜌p𝐸𝐸p
(i)(cos𝜃𝜃 𝒙𝒙� − sin𝜃𝜃 𝒛𝒛�) × 𝜌𝜌p∗𝐸𝐸p

∗(i)𝒚𝒚�� 

 = ½𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)�𝜌𝜌p𝐸𝐸p
(i)�

2
(sin𝜃𝜃 𝒙𝒙� + cos 𝜃𝜃 𝒛𝒛�) 

 = ½𝑍𝑍0−1𝑛𝑛0(𝜔𝜔)|𝜌𝜌p|2�𝐸𝐸p
(i)�

2
𝒌𝒌�(r). 

The time-averaged Poynting vectors of the incident and reflected beams are seen to be along 
the corresponding directions of propagation. The rate of flow of energy of the reflected beam is 
that of the incident beam multiplied by |𝜌𝜌p|2. The phase 𝜑𝜑p of the Fresnel reflection coefficient 
does not affect the reflectance of optical energy at the interface between the two media. 
 
Problem 3) a) For the transmitted beam, the continuity of 𝑘𝑘𝑥𝑥 yields 𝑘𝑘𝑥𝑥

(t) = 𝑘𝑘𝑥𝑥
(i) = (𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛0 sin𝜃𝜃. 

Also, the 𝐸𝐸-field amplitude immediately beneath the interface will be 𝑬𝑬s
(t) = 𝜏𝜏s𝐸𝐸s

(i)𝒚𝒚�. Thus, 

 𝒌𝒌(t) = 𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑧𝑧
(t)𝒛𝒛� = (𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛0 sin𝜃𝜃 𝒙𝒙� − �(𝑛𝑛 + i𝜅𝜅)2 − 𝑛𝑛02 sin2 𝜃𝜃 𝒛𝒛��· 

 𝑬𝑬(t)(𝒓𝒓, 𝑡𝑡) = 𝜏𝜏𝑠𝑠𝐸𝐸𝑠𝑠
(i) exp�i�𝒌𝒌(t) ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔�� 𝒚𝒚�. 

The square root must be chosen such that the imaginary part of 𝑘𝑘𝑧𝑧
(t) is negative, so that the 

field amplitude will decay exponentially as 𝑧𝑧 → −∞. 

From Maxwell’s 3rd equation: 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝜕𝜕⁄         →          𝒌𝒌(t) × 𝜏𝜏𝑠𝑠𝑬𝑬𝑠𝑠
(i) = 𝜇𝜇0𝜔𝜔𝑯𝑯0

(t) 

 →      𝑯𝑯0
(t) = 𝑍𝑍0−1�𝑛𝑛0 sin𝜃𝜃 𝒙𝒙� − �(𝑛𝑛 + i𝜅𝜅)2 − 𝑛𝑛02 sin2 𝜃𝜃 𝒛𝒛�� × 𝜏𝜏s𝐸𝐸s

(i)𝒚𝒚� 

 = 𝑍𝑍0−1𝜏𝜏s𝐸𝐸s
(i)��(𝑛𝑛 + i𝜅𝜅)2 − 𝑛𝑛02 sin2 𝜃𝜃 𝒙𝒙� + 𝑛𝑛0 sin 𝜃𝜃 𝒛𝒛��· 

Consequently, 𝑯𝑯(t)(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯0
(t) exp�i�𝒌𝒌(t) ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔��. 

b) 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½Re{𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯∗(𝒓𝒓, 𝑡𝑡)} 

 = ½Re �𝜏𝜏𝑠𝑠𝐸𝐸𝑠𝑠
(i) exp[i(𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑧𝑧

(t)𝑧𝑧)]𝒚𝒚� 

 × 𝑍𝑍0−1𝜏𝜏s∗𝐸𝐸s
∗(i) ��(𝑛𝑛 + i𝜅𝜅)2 − 𝑛𝑛02 sin2 𝜃𝜃

 ∗
𝒙𝒙� + 𝑛𝑛0 sin𝜃𝜃 𝒛𝒛�� exp[−i(𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑧𝑧

∗(t)𝑧𝑧)]� 

 = ½𝑍𝑍0−1�𝜏𝜏s𝐸𝐸s
(i)�

2
�𝑛𝑛0 sin𝜃𝜃 𝒙𝒙� − Re�(𝑛𝑛 + i𝜅𝜅)2 − 𝑛𝑛02 sin2 𝜃𝜃 𝒛𝒛�� exp�−2Im[𝑘𝑘𝑧𝑧

(t)]𝑧𝑧�· 

As pointed out earlier, Im[𝑘𝑘𝑧𝑧
(t)] is negative and, therefore, 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 decays exponentially as 

𝑧𝑧 → −∞. 
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Problem 4) The magnetization distribution 𝑴𝑴(𝒓𝒓, 𝑡𝑡) does not produce any (bound) electrical 
charges. Therefore 𝜌𝜌bound

(𝑒𝑒) (𝒓𝒓, 𝑡𝑡) = 0. The absence of electrical charge implies that the scalar 
potential (in the Lorenz gauge) is also absent in this problem, that is, 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 0. 

Since this is a magnetostatic problem (i.e., the magnetization is time-independent), the 
bound electric current-density 𝑱𝑱bound

(𝑒𝑒) (𝒓𝒓, 𝑡𝑡) and, consequently, the vector potential 𝑨𝑨(𝒓𝒓, 𝑡𝑡), will 
also be time-independent. As a result, we will have 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓(𝒓𝒓, 𝑡𝑡) − 𝜕𝜕𝑨𝑨(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝜕𝜕⁄ = 0. 

a) 𝑱𝑱bound
(𝑒𝑒) (𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1𝜵𝜵 × 𝑴𝑴(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1𝜵𝜵 × [𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�] 

 = 𝜇𝜇0−1𝑚𝑚0[𝛿𝛿(𝑥𝑥)𝛿𝛿′(𝑦𝑦)𝒙𝒙� − 𝛿𝛿′(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒚𝒚�] 

b) The symmetry of the problem allows us to choose the observation point 𝒓𝒓 as an arbitrary point 
in the 𝑥𝑥𝑥𝑥-plane, where 𝑧𝑧 = 0. In other words, 𝒓𝒓 = 𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚�. Also, since the current-density is 
time independent, the term 𝑡𝑡 − |𝒓𝒓 − 𝒓𝒓′| 𝑐𝑐⁄  can be dropped from the vector potential formula. We 
will have 

 𝑨𝑨(𝒓𝒓) = 𝜇𝜇0
4𝜋𝜋
� 𝑱𝑱bound

(𝑒𝑒) �𝒓𝒓′�
�𝒓𝒓 – 𝒓𝒓′�

d𝒓𝒓′
∞

−∞
= 𝑚𝑚0

4𝜋𝜋
� 𝛿𝛿(𝑥𝑥′)𝛿𝛿′(𝑦𝑦′)𝒙𝒙� − 𝛿𝛿′(𝑥𝑥′)𝛿𝛿(𝑦𝑦′)𝒚𝒚�

�(𝑥𝑥−𝑥𝑥′)2+(𝑦𝑦−𝑦𝑦′)2+𝑧𝑧′2
d𝑥𝑥′d𝑦𝑦′d𝑧𝑧′

∞

−∞
 

 = 𝑚𝑚0
4𝜋𝜋
�𝒙𝒙�� 𝛿𝛿′(𝑦𝑦′)

�𝑥𝑥2+(𝑦𝑦−𝑦𝑦′)2+𝑧𝑧′2
d𝑦𝑦′d𝑧𝑧′

∞

−∞
− 𝒚𝒚�� 𝛿𝛿′(𝑥𝑥′)

�(𝑥𝑥−𝑥𝑥′)2+𝑦𝑦2+𝑧𝑧′2
d𝑥𝑥′d𝑧𝑧′

∞

−∞
� 

 = 𝑚𝑚0
4𝜋𝜋
�−𝒙𝒙�� 𝑦𝑦

(𝑥𝑥2+𝑦𝑦2+𝑧𝑧′2)3 2⁄ d𝑧𝑧′
∞

−∞
+ 𝒚𝒚�� 𝑥𝑥

(𝑥𝑥2+𝑦𝑦2+𝑧𝑧′2)3 2⁄ d𝑧𝑧′
∞

−∞
� 

 = 𝑚𝑚0
2𝜋𝜋

(−𝑦𝑦𝒙𝒙� + 𝑥𝑥𝒚𝒚�)� d𝑧𝑧′

(𝑥𝑥2+𝑦𝑦2+𝑧𝑧′2)3 2⁄

∞

0
= 𝑚𝑚0

2𝜋𝜋
(−𝑦𝑦𝒙𝒙� + 𝑥𝑥𝒚𝒚�) 𝑧𝑧′

(𝑥𝑥2+𝑦𝑦2)�𝑥𝑥2+𝑦𝑦2+𝑧𝑧′2
�
𝑧𝑧′=0

∞
 

 = 𝑚𝑚0
2𝜋𝜋
�𝑥𝑥𝒚𝒚� − 𝑦𝑦𝒙𝒙�
𝑥𝑥2 + 𝑦𝑦2

� = �𝑚𝑚0
2𝜋𝜋
� 𝒛𝒛� × (𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚�)

𝑥𝑥2 + 𝑦𝑦2
= �𝑚𝑚0

2𝜋𝜋
� 𝒛𝒛� × 𝒓𝒓

𝑟𝑟2
= 𝑚𝑚0𝝓𝝓�

2𝜋𝜋𝜋𝜋
· 

c) 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜵𝜵 × 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = −𝜕𝜕𝐴𝐴𝜙𝜙
𝜕𝜕𝜕𝜕

𝒓𝒓� + 𝜕𝜕(𝑟𝑟𝐴𝐴𝜙𝜙)

𝑟𝑟𝑟𝑟𝑟𝑟
𝒛𝒛� = 𝜕𝜕(𝑚𝑚0 2𝜋𝜋⁄ )

𝑟𝑟𝑟𝑟𝑟𝑟
𝒛𝒛� = 0. 

The 𝐵𝐵-field, and also the 𝐻𝐻-field, are thus seen to be zero everywhere outside the wire —
even though the vector potential is not zero. Note that on the 𝑧𝑧-axis itself, the curl of 𝑨𝑨(𝒓𝒓) is not 
zero. Using the definition of Curl (𝜵𝜵 ×) as the integral of 𝑨𝑨(𝒓𝒓) around a small loop, normalized 
by the loop area, the 𝐵𝐵-field inside the wire is readily found to be 𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�. This is simply 
the magnetization 𝑴𝑴(𝒓𝒓) of the wire. Considering that 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴, we conclude that the 𝐻𝐻-
field inside the wire is zero as well. 
 

cylindrical coordinates 

Sifting property of 
𝛿𝛿(𝑥𝑥′) and 𝛿𝛿(𝑦𝑦′) 

Sifting property of 
𝛿𝛿′(𝑥𝑥′) and 𝛿𝛿′(𝑦𝑦′) 


