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Problem 1) 

a) 𝑷𝑷(𝒓𝒓, 𝑡𝑡) = 𝑝𝑝0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�       →       𝜌𝜌bound
(e) = −𝜵𝜵 ∙ 𝑷𝑷 = −𝜕𝜕𝑃𝑃𝑧𝑧

𝜕𝜕𝜕𝜕
= 0    and    𝑱𝑱bound

(e) = 𝜕𝜕𝑷𝑷
𝜕𝜕𝜕𝜕

= 0. 

b) Since the wire has no charge and no current, both its scalar and vector potentials must be zero. 

c) In the absence of charge and current, there will be no electric and no magnetic fields. 

d) 𝑴𝑴(𝒓𝒓, 𝑡𝑡) = 𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�    →    𝑱𝑱bound
(e) = 𝜇𝜇0−1𝜵𝜵 × 𝑴𝑴 = 𝜇𝜇0−1𝑚𝑚0[𝛿𝛿(𝑥𝑥)𝛿𝛿′(𝑦𝑦)𝒙𝒙� − 𝛿𝛿′(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒚𝒚�]. 

Since the wire has no electric charges, its scalar potential is zero, that is, 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 0. As for 
vector potential, since the electric current is constant in time, the wire’s vector potential will be 
time-independent. We thus write 

 𝑨𝑨(𝒓𝒓) = 𝜇𝜇0
4𝜋𝜋
� 𝑱𝑱bound

(e) (𝒓𝒓�)
|𝒓𝒓 − 𝒓𝒓�| 𝑑𝑑𝑥𝑥�𝑑𝑑𝑦𝑦�𝑑𝑑�̃�𝑧

∞

−∞
= 𝑚𝑚0

4𝜋𝜋
� 𝛿𝛿(𝑥𝑥�)𝛿𝛿′(𝑦𝑦�)𝒙𝒙� − 𝛿𝛿′(𝑥𝑥�)𝛿𝛿(𝑦𝑦�)𝒚𝒚�

�(𝑥𝑥−𝑥𝑥�)2+(𝑦𝑦−𝑦𝑦�)2+(𝜕𝜕−𝜕𝜕�)2
𝑑𝑑𝑥𝑥�𝑑𝑑𝑦𝑦�𝑑𝑑�̃�𝑧

∞

−∞
 

 = 𝑚𝑚0
4𝜋𝜋
� (−𝑦𝑦𝒙𝒙� + 𝑥𝑥𝒚𝒚�)

[𝑥𝑥2+𝑦𝑦2+(𝜕𝜕−𝜕𝜕�)2]3 2⁄ 𝑑𝑑�̃�𝑧
∞

−∞
= 𝑚𝑚0(−𝑦𝑦𝒙𝒙� + 𝑥𝑥𝒚𝒚�)

4𝜋𝜋(𝑥𝑥2+𝑦𝑦2) � 𝑑𝑑𝜕𝜕�
�𝑥𝑥2+𝑦𝑦2 {1+[(𝜕𝜕−𝜕𝜕�) �𝑥𝑥2+𝑦𝑦2⁄  ]2}3 2⁄

∞

−∞
 

 = 𝑚𝑚0(−𝑦𝑦𝒙𝒙� + 𝑥𝑥𝒚𝒚�)
4𝜋𝜋(𝑥𝑥2+𝑦𝑦2) � 𝑑𝑑𝑑𝑑

(1+𝑑𝑑2)3 2⁄

∞

−∞
= 𝑚𝑚0𝝓𝝓�

4𝜋𝜋�𝑥𝑥2+𝑦𝑦2
 𝑑𝑑
�1+𝑑𝑑2

�
−∞

∞
= 𝑚𝑚0𝝓𝝓�

2𝜋𝜋𝜋𝜋
 

Considering that the scalar potential is zero and the vector potential is time-independent, the 
𝐸𝐸-field surrounding the magnetic wire is found to be zero, that is, 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨 𝜕𝜕𝑡𝑡⁄ = 0. 
As for the magnetic field, the curl of 𝑨𝑨(𝒓𝒓) can be readily calculated in cylindrical coordinates 
and seen to be zero everywhere, except, along the 𝑧𝑧-axis, where 𝑨𝑨(𝒓𝒓) is singular. Using the 
definition of the curl operator in the vicinity of the 𝑧𝑧-axis, we find that 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜵𝜵 × 𝑨𝑨 =
𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�. This, of course, is a consequence of the fact that, by definition, 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴, 
and that, in the absence of magnetic charges, i.e., 𝜌𝜌bound

(m) = −𝜵𝜵 ∙ 𝑴𝑴 = 0, the 𝐻𝐻-field everywhere 
is zero. Consequently, the 𝐵𝐵-field exists only within the wire, where 𝑩𝑩 = 𝑴𝑴 = 𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�. 

Digression: An alternative means of calculating the magnetic wire’s vector potential is the 
Fourier method, namely, 

 𝑴𝑴(𝒌𝒌,𝜔𝜔) = ∫ 𝑴𝑴(𝒓𝒓, 𝑡𝑡) exp[−i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]𝑑𝑑𝒓𝒓𝑑𝑑𝑡𝑡∞
−∞  

 = ∫ 𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛� exp[−i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]𝑑𝑑𝒓𝒓𝑑𝑑𝑡𝑡∞
−∞ = (2𝜋𝜋)2𝑚𝑚0𝛿𝛿(𝑘𝑘𝜕𝜕)𝛿𝛿(𝜔𝜔)𝒛𝒛�. 

 𝑱𝑱bound
(e) (𝒌𝒌,𝜔𝜔) = i𝒌𝒌 × 𝜇𝜇0−1𝑴𝑴(𝒌𝒌,𝜔𝜔) = (2𝜋𝜋)2𝜇𝜇0−1𝑚𝑚0𝛿𝛿(𝑘𝑘𝜕𝜕)𝛿𝛿(𝜔𝜔)(i𝒌𝒌× 𝒛𝒛�). 

 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = 1
(2𝜋𝜋)4 ∫

𝜇𝜇0 𝑱𝑱bound
(e) (𝒌𝒌,𝜔𝜔)

𝑘𝑘2−(𝜔𝜔 𝑐𝑐⁄ )2 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]𝑑𝑑𝒌𝒌𝑑𝑑𝜔𝜔∞
−∞  

 = −�i𝑚𝑚0
4𝜋𝜋2

� 𝒛𝒛� × ∫  𝒌𝒌 𝛿𝛿(𝑘𝑘𝑧𝑧)𝛿𝛿(𝜔𝜔)
𝑘𝑘2−(𝜔𝜔 𝑐𝑐⁄ )2 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]𝑑𝑑𝒌𝒌𝑑𝑑𝜔𝜔∞

−∞  

 = −�i𝑚𝑚0
4𝜋𝜋2

� 𝒛𝒛� × ∫  𝒌𝒌∥ exp�i𝒌𝒌∥∙𝝆𝝆�
𝑘𝑘∥
2 𝑑𝑑𝒌𝒌∥

∞
−∞  

Use sifting 
properties of 
𝛿𝛿(∙) and 𝛿𝛿′(∙). 

Change variable 
to 𝜁𝜁 = 𝜕𝜕 − 𝜕𝜕�

�𝑥𝑥2+𝑦𝑦2
. 

Switch to cylindrical 
coordinates (𝜌𝜌,𝜙𝜙, 𝑧𝑧). 

𝒌𝒌∥ = 𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑦𝑦𝒚𝒚� 
𝝆𝝆 = 𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚�  
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 = −�i𝑚𝑚0
4𝜋𝜋2

� 𝒛𝒛� × ∫ ∫  (𝑘𝑘∥ cos𝜑𝜑) 𝝆𝝆�  exp�i𝑘𝑘∥𝜋𝜋 cos𝜑𝜑�
𝑘𝑘∥
2 𝑘𝑘∥𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘∥

2𝜋𝜋
𝜑𝜑=0

∞
𝑘𝑘∥=0

 

 = −�i𝑚𝑚0
4𝜋𝜋2

� (𝒛𝒛� × 𝝆𝝆�)∫  [∫ cos𝑑𝑑 exp(i𝑘𝑘∥𝜌𝜌 cos𝑑𝑑)𝑑𝑑𝑑𝑑2𝜋𝜋
𝜑𝜑=0 ]∞

𝑘𝑘∥=0
𝑑𝑑𝑘𝑘∥ 

 = 𝑚𝑚0𝝓𝝓�

2𝜋𝜋 ∫ 𝐽𝐽1(𝑘𝑘∥𝜌𝜌)𝑑𝑑𝑘𝑘∥
∞
0 = 𝑚𝑚0𝝓𝝓�

2𝜋𝜋𝜋𝜋
. 

This, of course, is the same solution for the vector potential as was obtained before. 
 

Problem 2) 

a) Dispersion relation:  𝑘𝑘2 = (𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔)    →    𝒌𝒌 = ±(𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔) 𝒌𝒌�. (1) 

In the above expression of 𝒌𝒌, both plus and minus signs for the direction of propagation are 
retained. Here 𝒌𝒌� is an arbitrary unit vector, and the product 𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔) is positive. 

b) Faraday’s law:   𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩
𝜕𝜕𝜕𝜕

      →      i𝒌𝒌 × 𝑬𝑬0 = i𝜔𝜔𝜇𝜇0𝜇𝜇(𝜔𝜔)𝑯𝑯0    →     𝑯𝑯0 = 𝒌𝒌 × 𝑬𝑬0
𝜔𝜔𝜇𝜇0𝜇𝜇(𝜔𝜔). (2) 

Considering that 𝜇𝜇(𝜔𝜔) appearing in the denominator in the above expression of 𝑯𝑯0 is 
negative, in what follows we will write it as  −�𝜇𝜇2(𝜔𝜔). We will have 

 𝑯𝑯0 = ± (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔)
𝜔𝜔𝜇𝜇0𝜇𝜇(𝜔𝜔)  𝒌𝒌� × 𝑬𝑬0 = ∓�𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔)

𝑐𝑐𝜇𝜇0�𝜇𝜇2(𝜔𝜔)
 𝒌𝒌� × 𝑬𝑬0 = ∓ 𝒌𝒌� × 𝑬𝑬0

𝑍𝑍0�𝜇𝜇(𝜔𝜔) 𝜀𝜀(𝜔𝜔)⁄
. (3) 

c)      〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½Re[𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯∗(𝒓𝒓, 𝑡𝑡)] = ½Re {𝑬𝑬0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] × 𝑯𝑯0
∗ exp[−i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]} 

 = ½Re(𝑬𝑬0 × 𝑯𝑯0
∗) = ∓Re�𝑬𝑬0×�𝒌𝒌� × 𝑬𝑬0∗ ��

2𝑍𝑍0�𝜇𝜇(𝜔𝜔) 𝜀𝜀(𝜔𝜔)⁄
= ∓Re�(𝑬𝑬0∙ 𝑬𝑬0∗ )𝒌𝒌� − �𝑬𝑬0∙ 𝒌𝒌��𝑬𝑬0∗ �

2𝑍𝑍0�𝜇𝜇(𝜔𝜔) 𝜀𝜀(𝜔𝜔)⁄
 

 = ∓� 𝐸𝐸0′
2+ 𝐸𝐸0″

2

2𝑍𝑍0�𝜇𝜇(𝜔𝜔) 𝜀𝜀(𝜔𝜔)⁄
� 𝒌𝒌�.   (4) 

 
 

Clearly, the choice of plus sign for 𝒌𝒌 in Eq.(1) results in a minus sign for 〈𝑺𝑺〉 in Eq.(4), and 
vice-versa. The direction of energy flow is thus seen to be opposite that of the 𝑘𝑘-vector, the latter 
signifying the direction of phase propagation. 

d) The Fresnel reflection coefficient from free space, where 𝜇𝜇𝑎𝑎(𝜔𝜔) = 𝜀𝜀𝑎𝑎(𝜔𝜔) = 1, onto a 
negative-index medium having 𝜇𝜇𝑏𝑏(𝜔𝜔) = 𝜀𝜀𝑏𝑏(𝜔𝜔) = −1, at normal incidence is the same for 𝑝𝑝- 
and 𝑠𝑠-polarized light, as follows: 

 𝜌𝜌𝑝𝑝 = 𝜌𝜌𝑠𝑠 = �𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄  − �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄
�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄  + �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄

= 1−1
1+1

= 0. (5) 

The reflection coefficient is thus zero, because the negative-index medium is impedance 
matched to free space. The plane-wave transmitted into the negative-index medium must, 
therefore, have the same 𝐸𝐸-field and the same 𝐻𝐻-field as the incident wave, because of the 
required boundary conditions at the interface. From Eq.(3), we must now choose the plus sign for 

𝑬𝑬0 ∙ 𝒌𝒌� = 0 because Maxwell’s 
first equation, 𝜵𝜵 ∙ 𝑫𝑫 = 0, yields 

i𝒌𝒌 ∙ 𝜀𝜀0𝜀𝜀(𝜔𝜔)𝑬𝑬0 = 0. 

𝑨𝑨 × (𝑩𝑩 × 𝑪𝑪) = (𝑨𝑨 ∙ 𝑪𝑪)𝑩𝑩 − (𝑨𝑨 ∙ 𝑩𝑩)𝑪𝑪  

𝑬𝑬0 ∙ 𝑬𝑬0∗ = (𝑬𝑬0′ + i𝑬𝑬0″) ∙ (𝑬𝑬0′ − i𝑬𝑬0″) = 𝐸𝐸0′
2 + 𝐸𝐸0″

2 

0 

𝐽𝐽1(∙) is Bessel function 
of first kind, 1st order. 
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the 𝐻𝐻-field of the transmitted plane-wave into the negative-index medium, 𝑯𝑯0 = 𝒌𝒌� × 𝑬𝑬0/𝑍𝑍0. 
The choice of the plus sign should also be obvious from the necessity of having the transmitted 
beam carry energy away from the interface, that is, 〈𝑺𝑺〉 and 𝒌𝒌� must be in the same direction. The 
choice of the plus sign for 𝑯𝑯0 then forces the 𝑘𝑘-vector in Eq.(1) to have the minus sign, that is, 
𝒌𝒌 = −(𝜔𝜔 𝑐𝑐⁄ )𝒌𝒌�. The transmitted plane-wave then has the following 𝐸𝐸- and 𝐻𝐻-fields: 

 𝑬𝑬(𝜕𝜕)(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬0exp�−i(𝜔𝜔 𝑐𝑐⁄ )(𝒌𝒌� ∙ 𝒓𝒓 + 𝑐𝑐𝑡𝑡)�, (6a) 

 𝑯𝑯(𝜕𝜕)(𝒓𝒓, 𝑡𝑡) = �𝒌𝒌� × 𝑬𝑬0/𝑍𝑍0�exp�−i(𝜔𝜔 𝑐𝑐⁄ )(𝒌𝒌� ∙ 𝒓𝒓 + 𝑐𝑐𝑡𝑡)�. (6b) 

The phase of the 𝐸𝐸- and 𝐻𝐻-fields thus travels toward the interface with the speed of light 𝑐𝑐. 
 
Problem 3) 
a) Dispersion relation: 

 𝑘𝑘2 = 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝜕𝜕2 = (𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇𝑎𝑎(𝜔𝜔)𝜀𝜀𝑎𝑎(𝜔𝜔)   →   𝑘𝑘𝜕𝜕
(i) = ±(𝜔𝜔 𝑐𝑐⁄ )�𝜀𝜀𝑎𝑎(𝜔𝜔) − (𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2. (1) 

Since the incident wave is assumed to be evanescent, its 𝑘𝑘𝜕𝜕 must be imaginary, and since it 
must decay away from the interface, only the plus sign will be acceptable. Therefore,  

 𝑘𝑘𝜕𝜕
(i) = i(𝜔𝜔 𝑐𝑐⁄ )�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2−𝜀𝜀𝑎𝑎(𝜔𝜔). (2) 

Maxwell’s first equation, 𝒌𝒌 ∙ 𝑬𝑬0 = 0, relates 𝐸𝐸𝜕𝜕0 to 𝐸𝐸𝑥𝑥0, 𝑘𝑘𝑥𝑥, and 𝑘𝑘𝜕𝜕, as follows: 

  𝑘𝑘𝑥𝑥𝐸𝐸𝑥𝑥0
(i) + 𝑘𝑘𝜕𝜕

(i)𝐸𝐸𝜕𝜕0
(i) = 0      →       𝐸𝐸𝜕𝜕0

(i) = −𝑘𝑘𝑥𝑥𝐸𝐸𝑥𝑥0
(i) 𝑘𝑘𝜕𝜕

(i)� . (3) 

Maxwell’s third equation, 𝒌𝒌 × 𝑬𝑬0 = 𝜔𝜔𝜇𝜇0𝜇𝜇(𝜔𝜔)𝑯𝑯0, now yields the magnetic field, namely, 

 𝑯𝑯0
(i) =

�𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑧𝑧
(i)𝒛𝒛��×�𝐸𝐸𝑥𝑥0

(i)𝒙𝒙� + 𝐸𝐸𝑧𝑧0
(i)𝒛𝒛��

𝜇𝜇0𝜔𝜔
= 𝑘𝑘𝑧𝑧

(i)𝐸𝐸𝑥𝑥0
(i)−𝑘𝑘𝑥𝑥𝐸𝐸𝑧𝑧0

(i)

𝜇𝜇0𝜔𝜔
𝒚𝒚� = 𝑘𝑘𝑥𝑥2+𝑘𝑘𝑧𝑧

(i)2

𝜇𝜇0𝜔𝜔𝑘𝑘𝑧𝑧
(i) 𝐸𝐸𝑥𝑥0

(i)𝒚𝒚� 

 = (𝜔𝜔 𝑐𝑐⁄ )2𝜀𝜀𝑎𝑎(𝜔𝜔)
i𝜇𝜇0(𝜔𝜔2 𝑐𝑐⁄ )�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑎𝑎(𝜔𝜔)

𝐸𝐸𝑥𝑥0
(i)𝒚𝒚� = − i𝜀𝜀𝑎𝑎(𝜔𝜔)

𝑍𝑍0�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑎𝑎(𝜔𝜔)
𝐸𝐸𝑥𝑥0

(i)𝒚𝒚�. (4) 

Similar calculations for the transmitted plane-wave yield 

 𝑘𝑘𝜕𝜕
(t) = −i(𝜔𝜔 𝑐𝑐⁄ )�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑏𝑏(𝜔𝜔). (5) 

 𝑯𝑯0
(t) = i𝜀𝜀𝑏𝑏(𝜔𝜔)

𝑍𝑍0�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑏𝑏(𝜔𝜔)
𝐸𝐸𝑥𝑥0

(t)𝒚𝒚�. (6) 

In the absence of a reflected wave, continuity of the tangential 𝐸𝐸- and 𝐻𝐻-fields at the 
boundary requires that 𝐸𝐸𝑥𝑥0

(t) = 𝐸𝐸𝑥𝑥0
(i) and  𝐻𝐻𝑦𝑦0

(t) = 𝐻𝐻𝑦𝑦0
(i). Therefore, 

 − i𝜀𝜀𝑎𝑎(𝜔𝜔)
𝑍𝑍0�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2− 𝜀𝜀𝑎𝑎(𝜔𝜔)

= i𝜀𝜀𝑏𝑏(𝜔𝜔)
𝑍𝑍0�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2− 𝜀𝜀𝑏𝑏(𝜔𝜔)

     →    𝜀𝜀𝑎𝑎2(𝜔𝜔)
(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2− 𝜀𝜀𝑎𝑎(𝜔𝜔) 

= 𝜀𝜀𝑏𝑏
2(𝜔𝜔)

(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2− 𝜀𝜀𝑏𝑏(𝜔𝜔) 

 →   𝑘𝑘𝑥𝑥 = �𝜔𝜔
𝑐𝑐
�� 𝜀𝜀𝑎𝑎(𝜔𝜔)

1+[𝜀𝜀𝑎𝑎(𝜔𝜔) 𝜀𝜀𝑏𝑏(𝜔𝜔)⁄ ] . (7) 

Note that the condition −1 < 𝜀𝜀𝑎𝑎(𝜔𝜔) 𝜀𝜀𝑏𝑏(𝜔𝜔)⁄ < 0 ensures that 𝑘𝑘𝑥𝑥 > (𝜔𝜔 𝑐𝑐⁄ )�𝜀𝜀𝑎𝑎(𝜔𝜔) , which is 
necessary for the incident wave to be evanescent.  
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b) The time-averaged Poynting vector for the 𝑝𝑝-polarized plane-waves under consideration is 
given by 

 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½Re{𝑬𝑬0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] × 𝑯𝑯0
∗ exp[−i(𝒌𝒌∗ ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]} 

 = ½ exp(−2𝒌𝒌″ ∙ 𝒓𝒓) Re�(𝐸𝐸𝑥𝑥0𝒙𝒙� + 𝐸𝐸𝜕𝜕0𝒛𝒛�) × 𝐻𝐻𝑦𝑦0∗ 𝒚𝒚�� 

 = ½ exp(−2𝒌𝒌″ ∙ 𝒓𝒓) Re�𝐸𝐸𝑥𝑥0𝐻𝐻𝑦𝑦0∗ 𝒛𝒛� − 𝐸𝐸𝜕𝜕0𝐻𝐻𝑦𝑦0∗ 𝒙𝒙�� 

 = ½ exp(−2𝒌𝒌″ ∙ 𝒓𝒓) Re�(𝑘𝑘𝑥𝑥 𝑘𝑘𝜕𝜕⁄ )𝐸𝐸𝑥𝑥0𝐻𝐻𝑦𝑦0∗ �𝒙𝒙�. (8) 

For the incident wave, we have 

 〈𝑆𝑆𝑥𝑥
(i)〉 = (𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )𝜀𝜀𝑎𝑎(𝜔𝜔)exp[−2(𝜔𝜔 𝑐𝑐⁄ )�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑎𝑎(𝜔𝜔) 𝜕𝜕]

2𝑍𝑍0[(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑎𝑎(𝜔𝜔)]
|𝐸𝐸𝑥𝑥0

(i)|2. (9) 

Similarly, for the transmitted wave, 

 〈𝑆𝑆𝑥𝑥
(t)〉 = (𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )𝜀𝜀𝑏𝑏(𝜔𝜔)exp[2(𝜔𝜔 𝑐𝑐⁄ )�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑏𝑏(𝜔𝜔) 𝜕𝜕] 

2𝑍𝑍0[(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑏𝑏(𝜔𝜔)]
|𝐸𝐸𝑥𝑥0

(t)|2. (10) 

Note that the energy flow direction in the dielectric is opposite to that in the metallic medium. 

c) In the case of and 𝑠𝑠-polarized incident wave, we will have 

 𝑯𝑯0
(i) =

(𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑧𝑧
(i)𝒛𝒛�) × 𝐸𝐸𝑦𝑦0

(i)𝒚𝒚�

𝜇𝜇0𝜔𝜔
= (𝐸𝐸𝑦𝑦0

(i) 𝑍𝑍0� )�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )𝒛𝒛� − i�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑎𝑎(𝜔𝜔) 𝒙𝒙��. (11) 

 𝑯𝑯0
(t) =

(𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑧𝑧
(t)𝒛𝒛�) × 𝐸𝐸𝑦𝑦0

(t)𝒚𝒚�

𝜇𝜇0𝜔𝜔
= (𝐸𝐸𝑦𝑦0

(t) 𝑍𝑍0� )�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )𝒛𝒛� + i�(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑏𝑏(𝜔𝜔) 𝒙𝒙��. (12) 

Clearly, the tangential components of both the 𝐸𝐸-field and the 𝐻𝐻-field cannot be continuous 
at the interface, because, as seen in Eqs.(11) and (12), 𝐻𝐻𝑥𝑥0

(i) ≠ 𝐻𝐻𝑥𝑥0
(t) when 𝐸𝐸𝑦𝑦0

(i) = 𝐸𝐸𝑦𝑦0
(t). 

 

Since 𝐸𝐸𝑥𝑥0𝐻𝐻𝑦𝑦0∗  is imaginary, 
its real part vanishes. 
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