Opti 501 Final Exam Solutions 12/19/2013
Problem 1)
a) 1) VD = pree

2) VXH=Jiree 47/

3) VxE-= ‘;‘j ,

4) V-B=0

b) The first and third equations thus form the set of equations for electrostatics, namely,
&V E(r) = prree () — V- P(1),
VXE()=0.
Similarly, the second and fourth equations form the set of equations for magnetostatics, that is,
VXH(T) = Jtree(T),
wV-H(r)=—-V-M(r).

c) The sources of the electrostatic field E(r) are the free and bound electric charge densities
Prree(T) and —V - P(r), respectively.

d) The sources of the magnetostatic field H are the free electric current-density Js... and the
bound magnetic charge density —V - M.

Problem 2)
a) 1) VD = peee;
aD
2) VXH:]free'i'E’
3) VXxE=-2 5 Ux(gE+P)=—g e pxp
- VxD-= —EO(Z—M—&‘OlVXP)—EOMO aI:
OH
- VXxD= _SOI}E)rgl)Irld — &olo 51
4) V-B=0 > wV-H=-V-M - pV-H=p™ .
b) In the above equations, p™ = —V-Mand J{™ . = aM/dt — 5V x P. We may thus write
0 (m)
(m) oM _ oM _ _owm _ _opi),
V" Jbouna = (at €'V X P) 1|7/.QV4YP) T ot l:at :

(m)

(m) 9Ppound _
- v ]bound + aotun = 0.




Problem 3) The incident beam is circularly polarized, which means that its p- and s-components
are equal in magnitude and 90° apart in phase. Since 8 = 45°, sinf = cos 8 = 1/+/2.

vn2—sin26-n?cosf _ 1.52-%-1.52/y2 _ 1.323-1.591 _
a) Pp = = = = = —0.092,
VnZ-sin2 0+n?cos®  |/1.52-1+152/y2  1.323+1.591

_ cosf-Vn?2-sin26 _ (1/v2) -yJ1.52-% _ 0.707-1.323 _

57 cosO+VnZ—sinZ§ (1/V2) +41.52-1% ~ 0.707+1.323 ~

—0.303.

The reflectivity of the dielectric surface for the incident (circularly-polarized) beam is thus given
by R = %(|p,|? + |ps|?) = 0.05.

b) The polarization state of the reflected beam is elliptical, because the reflected p- and s-
components continue to have a 90° phase difference (i.e., same as the incident beam), but the two

amplitudes are no longer equal: Es(r)/E;r) = 0.303/0.092 = 3.29. The sense of rotation of the

E-field around the ellipse is the reverse of that of the incident beam, so that a right-circularly-
polarized incident beam will result in a left-elliptically-polarized reflected beam, and vice-versa.

c) The Fresnel transmission coefficients are readily computed as follows:

_ 2Vn?—sin? 6 _ 2¢/1.52-% . 2x1.323
P VnZ-sinZ0+n2cos®  [152-15+152/y2 ~ 1.323+1.591

T = (0.908,

T = 2cos @ _ V2 ~  lal4
S cos@+VnZ—sinZ6 (1/\/5)4.\/1,52_1/2 = 0.707+1.323

= 0.697.

d) Since 7, = EJ/ES = E{P/EL, the s-component of the transmitted E-field amplitude is
7, = 0.697 times the s-component of the incident E-field amplitude. However, with the p-
component we have ©, = E&) /EY = (ES cos 6")/(ES cos 8). Using Snell’s law, sin6 = nsin6’,
we find 6’ = 28.126°. Therefore, cos6 /cos 6’ = 0.802, and E¥/ES” = 0.728. As was the case
with the reflected beam, we see that the transmitted p- and s-components have unequal
magnitudes: EV/ES = 0.697/0.728 = 0.957. The phase difference between ES” and ES® is still
90°, which is the phase difference between the s- and p-components of the incident wave. We

conclude that the transmitted beam is elliptically polarized, albeit not too far from circular,
having the same sense of rotation of the E-field around the ellipse as that of the incident beam.

e) The magnitude of the time-averaged Poynting vector is (S) = ¥%n|E,|?/Z,, where Z, is the
impedance of free space. This means that the Poynting vector of the transmitted p-light is
1.5 x 0.7282 = 0.795 times that of the incident beam. Similarly, the Poynting vector of the
transmitted s-light is 1.5 x 0.6972 = 0.729 times that of the incident beam. The total Poynting
vector (i.e., p plus s) of the transmitted beam is, therefore, %(0.795 + 0.729) = 0.762 times
that of the incident beam.

f) In contrast to the reflected beam, which has the same cross-sectional area as the incident
beam, the cross-sectional area of the transmitted beam is greater than that of the incident beam
by cos 8’ /cos O = 1.247. The transmitted optical power is, therefore, 0.762 x 1.247 = 0.95
times the incident optical power. In part (a) we found the reflected optical power to be 0.05
times the incident power. Conservation of energy is thus confirmed.




Problem 4) a) Denoting the magnitude of the k-vector in free space by k, = w/c, we have
k=kX+k,y+k,z=(kysin6 cosp)x + (kosinfsin¢p)y + (k, cos0)z,
Ey = Exo® + E,Y + E42,
H, = H, X + HyO? + H,Z.

b) V-E=0 - k-Ey=0 - kyEx+tkyEy+kE,=
> E,p = —(kyExo + kyEy0)/k,.
VXE=—-0B/ot - ikXE,=iwuyH,
- Hy= (uow) kX E, = (,uow)_l(kxf +k,y + kzﬁ) X (Exoic\ + Ey oy + Ezoﬁ)
=  Hy = (kyEzO - szyO)/(:qu),
Hyo = (k;Exo — kxEz0)/ (How),
Hyo = (kxEyo — kyExo)/(How).

The field components E, Hyo, Hy,o, H,o are thus determined once the components E,, and E,
are specified.

c) S(rt) =Re{Eyexp[i(k-r— wt)]} x Re{Hyexp[i(k r— wt)]}
= [Ejcos(k r — wt) — Egsin(k-r — wt)] X [Hycos(k-r — wt) — Hysin(k - r — wt)]
= (Ey x Hy) cos?(k-r — wt) + (E§ X Hy) sin?(k - r — wt)
—(Ey x Hy + Ej X Hy) sin(k - r — wt) cos(k - r — wt)
=W(Ey X Hy+ Eg X Hy) + % (Ey X Hy — Eg X Hy) cos[2(k -1 — wt)]
—%(Ey X Hy + Eg X Hp) sin[2(k - r — wt)].
Noting that k is a real-valued vector, we will have
Ey X Hy £ Eg X Hy = (uow)™'[Eq X (k x Eg) £ Eg X (k X Eg)]
= (ow) ' [(Eq - Ep)k — (K EQ)Eq + (Eg - E)k F (K E)Eg]
- ! ! n n O
= (how) 1(E0'EoiEo'Eo)k 0
EyxHy+ Eyx Hy = (uow) [Ey x (kX E}) + Ej X (k X Ej)]
= 2(uow) ' (Ep - Eg)k
Therefore,
S(r,t) = Ya(pow) {(Ey - Eq + Eq - E) + (Eq - Ey — Ej - Eg) cos[2(k - 7 — wt)]
—2(Ey - Ep) sin[2(k - r — wt)]}k.

d) The electromagnetic momentum density in free space is given by p(r,t) = S(r,t)/c?.



e) Assuming that E, is real-valued, we may write the energy-density of the E-field as follows:
Ee(r,t) = YoggRe{Ejexpli(k - r — wt)]} - Re{Eyexp[i(k - r — wt)]}
= YoegEy cos(k -1 — wt) - Ejcos(k - r — wt)
= YogoEy - Eg cos?(k-r — wt)
=Yg Ey - Ey + YagoE - Ej cos[2(k - — wt)].
Similarly, the energy-density of the H-field is given by
Exq(r,t) = YouoRe{Hyexp[i(k - r — wt)]} - Re{Hyexp[i(k - r — wt)]}
= YauoHy - Hy + YauoHyy - Hyy cos[2(k - r — wt)].
The above expression for the H-field energy-density may be further simplified by noting that
0
Hy - Hy = (1ow) 2(k X Ey) - (ke x Ey) = (o) 2[(k - k)(Ey - Ep) — (k-£3)°]
= (How)™?(k - k) (E} - Eg) = (£0/p0)E( - Ey.
It is seen that E4(r, t) = Eg(1, t). The total energy-density of the fields is, therefore, given by
E(r,t) = Eg(r,t) + Ex(r,t) = YagyEy - Ey + YagoEy - Ef cos[2(k - — wt)].

f) Poynting’s theorem asserts that, in free space, V- S(r,t) + d€(r,t)/0t = 0. Recalling that
Eg = 0, the results obtained in parts (c) and (e) above now yield

V-S(rt) =V {%(uyw) 1(Ey - Eg){1 + cos[2(k - r — wt)]}k}
= Y (uow) " L(E} - E})V - {{1 + cos[2(k T — wt)[}(ky® + ky P + kzz)}
= (o) (Ep - Ep) (k2 + k2 + k2 sin[2(k - 7 — wt)]
= —gowEy - Ejsin[2(k - r — wt)].
0E(r,t) /0t = 0{%eyEy  Ey + Yo Ey - Ey cos[2(k - r — wt)]}/0t
= gowEj - Eysin[2(k - r — wt)].

The energy continuity equation (i.e., Poynting’s theorem) is thus seen to be satisfied.

Digression: This problem can be solved in the general case when Eg # 0, although the algebra is
a bit tedious. Below we derive the energy densities of the E- and H-fields in the general case.

Eg(r,t) = YaggRe {Epexpli(k - r — wt)]} - Re {Eyexp[i(k - — wt)]}
= Yogy|Ep cos(k - r — wt) — Eg sin(k - r — wt)] - [Ej cos(k - — wt) — Eg sin(k - r — wt)]
= Yoeo[(Ep - E) cos? (k-1 — wt) + (Ej - Ej) sin?(k - r — wt)
—2(Ey - Eg) sin(k - r — wt) cos(k - r — wt)]
= Yaeo{(Ey " Ey + Eg - Eg) + (Ey - Ey —Eg - Eg) cos[2(k - r — wt)]
—2E, - Egsin[2(k-r — wt)]}.



Similarly,
Ex(r, t) = YaugRe{Hyexpli(k - r — wt)]} - Re{Hyexp[i(k - r — wt)]}
= Yapo{(Ho - Ho + Hg - Hg) + (Ho - Ho — Hg - Hg) cos[2(k - 7 — wt)]
—2Hy - Hysin[2(k -1 — wt)]}.
Now
Hy-Hy+ Hy - Hy = (pow)™?[(k X E) - (k X Eg) + (k X Eg) - (k X Eg)]
= (uow) [k K)(Ey * Eg) — (R~Ep)” + (k- K) (Y~ E) F (K EG)?]
= (How) 2 (k- R)[(Ey - Ep) % (E} - E3)] °
= (eo/uo)[(Eq - Ep) £ (Eg - Eg)]
Hy - Hy = (ow) ™ (k X Ep) - (k X Eg
= (ow)?[(k - k)(E} - Eg) — (k< Eg) (R~Ep)]
= (o) (k k) (Ey - E} o0
= (&0/10)(Ep - Eg).
As before, the energy densities of the E- and H-fields are seen to be equal. We will have
Ep(r, ) + Eu(r,t) = Yoeo{(E) - Ey + El - E}) + (E) - Ej — El) - E) cos[2(k - 7 — wt)]
—2E{ - Egsin[2(k-r — wt)]}.

The Poynting vector was already derived in part (c) for the general case of Eg # 0. Verification
of the energy continuity equation now follows the same steps as in part (f).




