Problem 1) a) An optical medium is linear when it responds linearly to the local electric and magnetic fields. For instance, in the case of monochromatic excitation with frequency ω, a linear material's polarization and magnetization at (\boldsymbol{r}, t) are given by $\boldsymbol{P}(\boldsymbol{r}) e^{-\mathrm{i} \omega t}=\varepsilon_{0} \chi_{\mathrm{e}}(\omega) \boldsymbol{E}(\boldsymbol{r}) e^{-\mathrm{i} \omega t}$ and $\boldsymbol{M}(\boldsymbol{r}) e^{-\mathrm{i} \omega t}=\mu_{0} \chi_{\mathrm{m}}(\omega) \boldsymbol{H}(\boldsymbol{r}) e^{-\mathrm{i} \omega t}$, while $\rho_{\text {free }}(\boldsymbol{r}, t)=0$ and $\boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)=0$. It is seen that the relation between $\boldsymbol{P}(\boldsymbol{r})$ and $\boldsymbol{E}(\boldsymbol{r})$ is one of proportionality, and so is the relation between $\boldsymbol{M}(\boldsymbol{r})$ and $\boldsymbol{H}(\boldsymbol{r})$.

The material is said to be isotropic when its response to the local \boldsymbol{E} and \boldsymbol{H} fields does not depend on the direction of these fields. For instance, the aforementioned linear medium is also isotropic if $\chi_{\mathrm{e}}(\omega)$ as well as $\chi_{\mathrm{m}}(\omega)$ remain the same irrespective of whether the \boldsymbol{E} and \boldsymbol{H} fields happen to be along the x, or y, or z directions or, for that matter, along any direction in space.

The material medium is homogeneous if its optical properties, such as electric and magnetic susceptibilities $\chi_{\mathrm{e}}(\omega)$ and $\chi_{\mathrm{m}}(\omega)$, are independent of the location \boldsymbol{r} within the medium.
b) The plane of incidence is the geometric plane defined by the vector $\boldsymbol{k}^{(\mathrm{inc})}$ and the surface normal, which, in the present problem, is the z-axis. In the case of normal incidence, where the incident k-vector is aligned with the z-axis, the plane of incidence is not unique. Stated differently, in the case of normal incidence, any plane that is perpendicular to the interfacial $x y$ plane can be considered to be the plane of incidence.
c) The incident plane-wave is p-polarized (p stands for parallel) if its state of polarization is linear, with the E-field vector residing entirely in the plane of incidence. The plane-wave is s polarized (s stands for senkrecht, which is German for perpendicular) if its state of polarization is also linear, but the E-field is perpendicular to the plane of incidence. At normal incidence, one cannot distinguish between p - and s-polarization states; consequently, when a normally-incident plane-wave is linearly polarized, it is equally valid to treat it as either p - or s-polarized light.
d) The incident plane-wave is linearly polarized if $E_{p}=0$, or $E_{s}=0$, or when neither E_{p} nor E_{s} is zero but $\varphi_{p}-\varphi_{s}=0^{\circ}$ or 180°. The plane-wave is circularly polarized if $\left|E_{p}\right|=\left|E_{s}\right| \neq 0$ and $\varphi_{p}-\varphi_{s}=90^{\circ}$ or -90°. When a monochromatic plane-wave is neither linearly nor circularly polarized, it is said to be elliptically polarized. With the passage of time, the tip of the E-field vector in the latter case describes an ellipse, which is known as the ellipse of polarization.

Problem 2) a) $\boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Real}\left\{\boldsymbol{E}_{0} e^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)}\right\}=\operatorname{Real}\left\{\left(\boldsymbol{E}_{0}^{\prime}+\mathrm{i} \boldsymbol{E}_{0}^{\prime \prime}\right) e^{\mathrm{i}\left[\left(\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}\right) \cdot \boldsymbol{r}-\omega t\right]}\right\}$

$$
\begin{aligned}
& =e^{-\boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}} \operatorname{Real}\left\{\left(\boldsymbol{E}_{0}^{\prime}+\mathrm{i} \boldsymbol{E}_{0}^{\prime \prime}\right)\left[\cos \left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}-\omega t\right)+\mathrm{i} \sin \left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}-\omega t\right)\right]\right\} \\
& =e^{-\boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}}\left[\boldsymbol{E}_{0}^{\prime} \cos \left(\omega t-\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}\right)+\boldsymbol{E}_{0}^{\prime \prime} \sin \left(\omega t-\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}\right)\right] .
\end{aligned}
$$

b) Attenuation of the E-field is due to the leading exponential factor $\exp \left(-\boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}\right)$ in the above equation. This attenuation, which is in the direction of the vector $\boldsymbol{k}^{\prime \prime}$, occurs at a rate given by the magnitude $k^{\prime \prime}$ of $\boldsymbol{k}^{\prime \prime}$. Whatever the magnitude of the E-field may be at a point \boldsymbol{r}_{0} within a plane perpendicular to $\boldsymbol{k}^{\prime \prime}$, if one moves away from \boldsymbol{r}_{0} by the distance of $1 / k^{\prime \prime}$ along the unit-vector $\widehat{\boldsymbol{k}}^{\prime \prime}=\boldsymbol{k}^{\prime \prime} / k^{\prime \prime}$ (that is, if one moves to the point $\boldsymbol{r}_{0}+\left(\boldsymbol{k}^{\prime \prime} / k^{\prime \prime 2}\right)$), then the E-field magnitude will drop by a factor of $1 / e$. This is the sense in which the rate of attenuation of the E-field along the direction of $\widehat{\boldsymbol{k}}^{\prime \prime}$ is said to be equal to the magnitude $k^{\prime \prime}$ of the vector $\boldsymbol{k}^{\prime \prime}$.
c) The phase is obtained by examining the argument ($\omega t-\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}$) of the sine and cosine functions in the expressions of the \boldsymbol{E} and \boldsymbol{H} fields. In any plane that is perpendicular to the vector \boldsymbol{k}^{\prime}, the phase $\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}$ of a plane-wave is a constant. The phase difference between the fields in two planes that are both perpendicular to \boldsymbol{k}^{\prime} at a separation distance of d (in the direction of \boldsymbol{k}^{\prime}) thus equals $k^{\prime} d$. If we consider a point $\left(\boldsymbol{r}_{0}, t_{0}\right)$ on a given phase-front and try to keep $\left(\omega t-\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}\right)$ constant as t rises from t_{0} to $t_{0}+\Delta t$, we must move from \boldsymbol{r}_{0} to $\boldsymbol{r}_{0}+\Delta \boldsymbol{r}$ in the direction of \boldsymbol{k}^{\prime} and in such a way as to ensure that $\omega \Delta t-\boldsymbol{k}^{\prime} \cdot \Delta \boldsymbol{r}=0$. The phase-front velocity is thus seen to be along the direction of \boldsymbol{k}^{\prime} and have the magnitude $v_{\text {phase }}=\Delta r / \Delta t=\omega / k^{\prime}$.
d) The state of polarization of the plane-wave is determined by the two vectors $\boldsymbol{E}_{0}^{\prime}$ and $\boldsymbol{E}_{0}^{\prime \prime}$. If either one of these vectors happens to be zero, or if $\boldsymbol{E}_{0}^{\prime}$ and $\boldsymbol{E}_{0}^{\prime \prime}$ turn out to be parallel or antiparallel to each other (i.e., aligned along a straight line), the E-field will have a fix and unique direction in space at all times, in which case the plane-wave is said to be linearly-polarized along that direction. In contrast, when $\boldsymbol{E}_{0}^{\prime}$ and $\boldsymbol{E}_{0}^{\prime \prime}$ are equal in magnitude and perpendicular to each other, the plane-wave is said to be circularly-polarized.
e) A plane-wave is homogeneous when its k-vector is real; that is, when $\boldsymbol{k}^{\prime \prime}=0$. Whereas the amplitudes of the \boldsymbol{E} and \boldsymbol{H} fields of an inhomogeneous plane-wave exponentially decay along the direction of $\boldsymbol{k}^{\prime \prime}$, in the case of homogeneous plane-waves, the field amplitudes only vary periodically in space along the direction of \boldsymbol{k}^{\prime} - while also oscillating with frequency ω in time. The \boldsymbol{E} and \boldsymbol{H} fields of a homogeneous plane-wave do not grow or decay in spacetime.

Problem 3) a) $\quad \boldsymbol{E}(\boldsymbol{r}, t)=\boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)], \quad \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$.
b) i) $\boldsymbol{\nabla} \cdot \boldsymbol{D}(\boldsymbol{r}, t)=\rho_{\text {free }}(\boldsymbol{r}, t) \quad \rightarrow \quad \mathrm{i} \boldsymbol{k} \cdot \varepsilon_{0} \varepsilon(\omega) \boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=0 \quad \rightarrow \quad \boldsymbol{k} \cdot \boldsymbol{E}_{0}=0$.
ii) $\boldsymbol{\nabla} \times \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)+\frac{\partial \boldsymbol{D}(\boldsymbol{r}, t)}{\partial t}$ $\rightarrow \mathrm{i} \boldsymbol{k} \times \boldsymbol{H}_{0} \mathrm{e}^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)}=-\mathrm{i} \omega \varepsilon_{0} \varepsilon(\omega) \boldsymbol{E}_{0} \mathrm{e}^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)} \quad \rightarrow \quad \boldsymbol{k} \times \boldsymbol{H}_{0}=-\varepsilon_{0} \varepsilon(\omega) \omega \boldsymbol{E}_{0}$.
iii) $\boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r}, t)=-\frac{\partial \boldsymbol{B}(\boldsymbol{r}, t)}{\partial t}$

$$
\rightarrow \mathrm{i} \boldsymbol{k} \times \boldsymbol{E}_{0} e^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)}=\mathrm{i} \omega \mu_{0} \mu(\omega) \boldsymbol{H}_{0} \underline{\mathrm{e}}^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)} \quad \rightarrow \quad \boldsymbol{k} \times \boldsymbol{E}_{0}=\mu_{0} \mu(\omega) \omega \boldsymbol{H}_{0} .
$$

iv) $\boldsymbol{\nabla} \cdot \boldsymbol{B}(\boldsymbol{r}, t)=0 \quad \rightarrow \quad \mathrm{i} \boldsymbol{k} \cdot \mu_{0} \mu(\omega) \boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=0 \quad \rightarrow \quad \boldsymbol{k} \cdot \boldsymbol{H}_{0}=0$.
c) $\boldsymbol{k} \cdot \boldsymbol{E}_{0}=0 \rightarrow k_{x} E_{0 x}+k_{y} E_{0 y}+k_{z} E_{0 z}=0 \quad \rightarrow \quad E_{0 z}=-\left(k_{x} E_{0 x}+k_{y} E_{0 y}\right) / k_{z}$.
d) Multiply both sides of Eq.(ii) into $\mu_{0} \mu(\omega) \omega$, then substitute $\boldsymbol{k} \times \boldsymbol{E}_{0}$ for $\mu_{0} \mu(\omega) \omega \boldsymbol{H}_{0}$ from

$$
\begin{array}{ll}
\text { Eq.(iii) to arrive at } & \text { from Eq.(i) } \\
\boldsymbol{k} \times\left(\boldsymbol{k} \times \boldsymbol{E}_{0}\right)=-\mu_{0} \varepsilon_{0} \omega^{2} \mu(\omega) \varepsilon(\omega) \boldsymbol{E}_{0} & \rightarrow\left(\boldsymbol{k} \cdot \boldsymbol{E}_{0}\right) \boldsymbol{k}-(\boldsymbol{k} \cdot \boldsymbol{k}) \boldsymbol{E}_{0}=-(\omega / c)^{2} \mu(\omega) \varepsilon(\omega) \boldsymbol{E} / 0 \\
& \rightarrow \boldsymbol{k} \cdot \boldsymbol{k}=(\omega / c)^{2} \mu(\omega) \varepsilon(\omega)
\end{array}
$$

Traditionally, the refractive index is defined as $n(\omega)=\sqrt{\mu(\omega) \varepsilon(\omega)}$. Consequently, the above dispersion relation may equivalently be written as $k^{2}=[n(\omega) \omega / c]^{2}$.

Problem 4) a) The correct expression for the Poynting vector is $\boldsymbol{S}(\boldsymbol{r}, t)=\boldsymbol{E}^{\prime}(\boldsymbol{r}, t) \times \boldsymbol{H}^{\prime}(\boldsymbol{r}, t)$.
b) $\operatorname{Real}\{\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}(\boldsymbol{r}, t)\}=\operatorname{Real}\left\{\left[\boldsymbol{E}^{\prime}(\boldsymbol{r}, t)+\mathrm{i} \boldsymbol{E}^{\prime \prime}(\boldsymbol{r}, t)\right] \times\left[\boldsymbol{H}^{\prime}(\boldsymbol{r}, t)+\mathrm{i} \boldsymbol{H}^{\prime \prime}(\boldsymbol{r}, t)\right]\right\}$

$$
\begin{aligned}
& =\operatorname{Real}\left\{\left[\boldsymbol{E}^{\prime} \times \boldsymbol{H}^{\prime}-\boldsymbol{E}^{\prime \prime} \times \boldsymbol{H}^{\prime \prime}\right]+\mathrm{i}\left[\boldsymbol{E}^{\prime} \times \boldsymbol{H}^{\prime \prime}+\boldsymbol{E}^{\prime \prime} \times \boldsymbol{H}^{\prime}\right]\right\} \\
& =\boldsymbol{E}^{\prime} \times \boldsymbol{H}^{\prime}-\boldsymbol{E}^{\prime \prime} \times \boldsymbol{H}^{\prime \prime} .
\end{aligned}
$$

The presence of $\boldsymbol{E}^{\prime \prime} \times \boldsymbol{H}^{\prime \prime}$ causes the above expression to differ from that obtained in part (a), which indicates that the Poynting vector $\boldsymbol{S}(\boldsymbol{r}, t)$ should not be written as $\operatorname{Real}\{\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}(\boldsymbol{r}, t)\}$.

Problem 5) a) In the dispersion relation, $\boldsymbol{k} \cdot \boldsymbol{k}=[n(\omega) \omega / c]^{2}$, we have $\boldsymbol{k} \cdot \boldsymbol{k}=\left(\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}\right) \cdot$ $\left(\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}\right)=k^{\prime 2}-k^{\prime 2}+\mathrm{i} 2 \boldsymbol{k}^{\prime} \cdot \boldsymbol{k}^{\prime \prime}$. Since the expression on the right-hand side of the dispersion relation is real, equating it to $\boldsymbol{k} \cdot \boldsymbol{k}$ implies that the imaginary part $2 \boldsymbol{k}^{\prime} \cdot \boldsymbol{k}^{\prime \prime}$ of $\boldsymbol{k} \cdot \boldsymbol{k}$ must be zero; that is, \boldsymbol{k}^{\prime} is orthogonal to $\boldsymbol{k}^{\prime \prime}$. Equality of the real parts then yields $k^{\prime 2}-k^{\prime \prime 2}=[n(\omega) \omega / c]^{2}$. Since the right-hand side of this equation is real and positive, we must have $k^{\prime}>k^{\prime \prime}$.
b) $\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t \rightarrow \mathrm{i} \boldsymbol{k} \times \boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=\mathrm{i} \omega \mu_{0} \mu(\omega) \boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$

$$
\rightarrow \quad \boldsymbol{H}_{0}=\frac{\boldsymbol{k} \times \boldsymbol{E}_{0}}{\mu_{0} \mu(\omega) \omega}
$$

c) $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle=1 / 2 \operatorname{Real}\left\{\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}^{*}(\boldsymbol{r}, t)\right\}$

$$
\begin{aligned}
& =1 / 2 \operatorname{Real}\left\{\boldsymbol{E}_{0} e^{\mathrm{i}\left[\left(\boldsymbol{k}^{\prime \prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}\right) \cdot \boldsymbol{r}-\omega /\right]} \times \boldsymbol{H}_{0}^{*} e^{-\mathrm{i}\left[\left(\boldsymbol{k}^{\prime}-\mathrm{i} \boldsymbol{k}^{\prime \prime}\right) \cdot \boldsymbol{r}-\omega \boldsymbol{k}\right]}\right\} \\
& =\frac{e^{-2 \boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}}}{2 \mu_{0} \mu(\omega) \omega} \operatorname{Real}\left\{\boldsymbol{E}_{0} \times\left(\boldsymbol{k}^{*} \times \boldsymbol{E}_{0}^{*}\right)\right\}=\frac{e^{-2 \boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}}}{2 \mu_{0} \mu(\omega) \omega} \operatorname{Real}\left\{\left(\boldsymbol{E}_{0} \cdot \boldsymbol{E}_{0}^{*}\right) \boldsymbol{k}^{*}-\left(\boldsymbol{E}_{0} \cdot \boldsymbol{k}^{*}\right) \boldsymbol{E}_{0}^{*}\right\} .
\end{aligned}
$$

Considering that $\boldsymbol{E}_{0} \cdot \boldsymbol{E}_{0}^{*}=\left(\boldsymbol{E}_{0}^{\prime}+\mathrm{i} \boldsymbol{E}_{0}^{\prime \prime}\right) \cdot\left(\boldsymbol{E}_{0}^{\prime}-\mathrm{i} \boldsymbol{E}_{0}^{\prime \prime}\right)=\boldsymbol{E}_{0}^{\prime 2}+\boldsymbol{E}_{0}^{\prime \prime 2}$ is real, the first term on the right-hand side of the above equation simplifies to $\operatorname{Real}\left\{\left(\boldsymbol{E}_{0} \cdot \boldsymbol{E}_{0}^{*}\right) \boldsymbol{k}^{*}\right\}=\left(\boldsymbol{E}_{0}^{\prime 2}+\boldsymbol{E}_{0}^{\prime \prime 2}\right) \boldsymbol{k}^{\prime}$. As for the second term, we write

$$
\begin{aligned}
& \boldsymbol{k}^{*} \times\left(\boldsymbol{E}_{0} \times \boldsymbol{E}_{0}^{*}\right)=\left(\boldsymbol{k}^{*} \cdot \boldsymbol{E}_{0}^{*}\right) \boldsymbol{E}_{0}-\left(\boldsymbol{k}^{*} \cdot \boldsymbol{E}_{0}\right) \boldsymbol{E}_{0}^{*} \quad \begin{array}{c}
\text { In consequence of } \\
\text { Maxwell's 1 }{ }^{\text {t equation }}
\end{array} \\
\rightarrow & \left(\boldsymbol{k}^{\prime}-\mathrm{i} \boldsymbol{k}^{\prime \prime}\right) \times\left[\left(\boldsymbol{E}_{0}^{\prime}+\mathrm{i} \boldsymbol{E}_{0}^{\prime \prime}\right) \times\left(\boldsymbol{E}_{0}^{\prime}-\mathrm{i} \boldsymbol{E}_{0}^{\prime \prime}\right)\right]=\left(\boldsymbol{k} \cdot \boldsymbol{E}_{0}^{\prime}\right)^{*} \boldsymbol{E}_{0}-\left(\boldsymbol{E}_{0} \cdot \boldsymbol{k}^{*}\right) \boldsymbol{E}_{0}^{*} \\
\rightarrow & \left(\boldsymbol{k}^{\prime}-\mathrm{i} \boldsymbol{k}^{\prime \prime}\right) \times\left[-2 \mathrm{i}\left(\boldsymbol{E}_{0}^{\prime} \times \boldsymbol{E}_{0}^{\prime \prime}\right)\right]=-\left(\boldsymbol{E}_{0} \cdot \boldsymbol{k}^{*}\right) \boldsymbol{E}_{0}^{*} \\
\rightarrow & 2 \boldsymbol{k}^{\prime \prime} \times\left(\boldsymbol{E}_{0}^{\prime} \times \boldsymbol{E}_{0}^{\prime \prime}\right)+\mathrm{i} 2 \boldsymbol{k}^{\prime} \times\left(\boldsymbol{E}_{0}^{\prime} \times \boldsymbol{E}_{0}^{\prime \prime}\right)=\left(\boldsymbol{E}_{0} \cdot \boldsymbol{k}^{*}\right) \boldsymbol{E}_{0}^{*} .
\end{aligned}
$$

Thus, we find that $\operatorname{Real}\left\{\left(\boldsymbol{E}_{0} \cdot \boldsymbol{k}^{*}\right) \boldsymbol{E}_{0}^{*}\right\}=2 \boldsymbol{k}^{\prime \prime} \times\left(\boldsymbol{E}_{0}^{\prime} \times \boldsymbol{E}_{0}^{\prime \prime}\right)$. Consequently,

$$
\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle=\frac{\left[\left(\boldsymbol{E}_{0}^{\prime 2}+\boldsymbol{E}_{0}^{\prime \prime 2}\right) \boldsymbol{k}^{\prime}-2 \boldsymbol{k}^{\prime \prime} \times\left(\boldsymbol{E}_{0}^{\prime} \times \boldsymbol{E}_{0}^{\prime \prime}\right)\right] \exp \left(-2 \boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}\right)}{2 \mu_{0} \mu(\omega) \omega}
$$

The first term of the above expression is along the direction of \boldsymbol{k}^{\prime}, which, in accordance with the results obtained in part (a), is orthogonal to $\boldsymbol{k}^{\prime \prime}$. The second term of the expression is also seen to be orthogonal to $\boldsymbol{k}^{\prime \prime}$ (due to cross-multiplication). Therefore, the time-averaged Poynting vector has no component along the direction of $\boldsymbol{k}^{\prime \prime}$.

