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Opti 501 Final Exam Solutions 12/14/2021 

Problem 1) a) An optical medium is linear when it responds linearly to the local electric and 
magnetic fields. For instance, in the case of monochromatic excitation with frequency 𝜔𝜔, a linear 
material’s polarization and magnetization at (𝒓𝒓, 𝑡𝑡) are given by 𝑷𝑷(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔 = 𝜀𝜀0𝜒𝜒e(𝜔𝜔)𝑬𝑬(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔 
and 𝑴𝑴(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔 = 𝜇𝜇0𝜒𝜒m(𝜔𝜔)𝑯𝑯(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔, while 𝜌𝜌free(𝒓𝒓, 𝑡𝑡) = 0 and 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) = 0. It is seen that 
the relation between 𝑷𝑷(𝒓𝒓) and 𝑬𝑬(𝒓𝒓) is one of proportionality, and so is the relation between 
𝑴𝑴(𝒓𝒓) and 𝑯𝑯(𝒓𝒓). 

The material is said to be isotropic when its response to the local 𝑬𝑬 and 𝑯𝑯 fields does not 
depend on the direction of these fields. For instance, the aforementioned linear medium is also 
isotropic if 𝜒𝜒e(𝜔𝜔) as well as 𝜒𝜒m(𝜔𝜔) remain the same irrespective of whether the 𝑬𝑬 and 𝑯𝑯 fields 
happen to be along the 𝑥𝑥, or 𝑦𝑦, or 𝑧𝑧 directions or, for that matter, along any direction in space. 

The material medium is homogeneous if its optical properties, such as electric and magnetic 
susceptibilities 𝜒𝜒e(𝜔𝜔) and 𝜒𝜒m(𝜔𝜔), are independent of the location 𝒓𝒓 within the medium. 

b) The plane of incidence is the geometric plane defined by the vector 𝒌𝒌(inc) and the surface 
normal, which, in the present problem, is the 𝑧𝑧-axis. In the case of normal incidence, where the 
incident 𝑘𝑘-vector is aligned with the 𝑧𝑧-axis, the plane of incidence is not unique. Stated 
differently, in the case of normal incidence, any plane that is perpendicular to the interfacial 𝑥𝑥𝑦𝑦-
plane can be considered to be the plane of incidence. 

c) The incident plane-wave is 𝑝𝑝-polarized (𝑝𝑝 stands for parallel) if its state of polarization is 
linear, with the 𝐸𝐸-field vector residing entirely in the plane of incidence. The plane-wave is 𝑠𝑠-
polarized (𝑠𝑠 stands for senkrecht, which is German for perpendicular) if its state of polarization 
is also linear, but the 𝐸𝐸-field is perpendicular to the plane of incidence. At normal incidence, one 
cannot distinguish between 𝑝𝑝- and 𝑠𝑠-polarization states; consequently, when a normally-incident 
plane-wave is linearly polarized, it is equally valid to treat it as either 𝑝𝑝- or 𝑠𝑠-polarized light. 

d) The incident plane-wave is linearly polarized if 𝐸𝐸𝑝𝑝 = 0, or 𝐸𝐸𝑠𝑠 = 0, or when neither 𝐸𝐸𝑝𝑝 nor 𝐸𝐸𝑠𝑠 
is zero but 𝜑𝜑𝑝𝑝 − 𝜑𝜑𝑠𝑠 = 0° or 180°. The plane-wave is circularly polarized if |𝐸𝐸𝑝𝑝| = |𝐸𝐸𝑠𝑠| ≠ 0 and 
𝜑𝜑𝑝𝑝 − 𝜑𝜑𝑠𝑠 = 90° or −90°. When a monochromatic plane-wave is neither linearly nor circularly 
polarized, it is said to be elliptically polarized. With the passage of time, the tip of the 𝐸𝐸-field 
vector in the latter case describes an ellipse, which is known as the ellipse of polarization. 
 
Problem 2) a) 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = Real�𝑬𝑬0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)� = Real�(𝑬𝑬0

′ + i𝑬𝑬0
″)𝑒𝑒i[(𝒌𝒌′+ i𝒌𝒌″) ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔]� 

 = 𝑒𝑒−𝒌𝒌″ ∙ 𝒓𝒓 Real{(𝑬𝑬0
′ + i𝑬𝑬0

″)[cos(𝒌𝒌′ ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡) + i sin(𝒌𝒌′ ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]} 

 = 𝑒𝑒−𝒌𝒌″ ∙ 𝒓𝒓 [𝑬𝑬0
′ cos(𝜔𝜔𝑡𝑡 − 𝒌𝒌′ ∙ 𝒓𝒓) + 𝑬𝑬0

″ sin(𝜔𝜔𝑡𝑡 − 𝒌𝒌′ ∙ 𝒓𝒓)]. 

b) Attenuation of the 𝐸𝐸-field is due to the leading exponential factor exp(−𝒌𝒌″ ∙ 𝒓𝒓) in the above 
equation. This attenuation, which is in the direction of the vector 𝒌𝒌″, occurs at a rate given by the 
magnitude 𝑘𝑘″ of 𝒌𝒌″. Whatever the magnitude of the 𝐸𝐸-field may be at a point 𝒓𝒓0 within a plane 
perpendicular to 𝒌𝒌″, if one moves away from 𝒓𝒓0 by the distance of 1 𝑘𝑘″⁄  along the unit-vector 
𝒌𝒌�″ = 𝒌𝒌″ 𝑘𝑘″⁄  (that is, if one moves to the point 𝒓𝒓0 + (𝒌𝒌″ 𝑘𝑘″2⁄ )), then the 𝐸𝐸-field magnitude will 
drop by a factor of 1 𝑒𝑒⁄ . This is the sense in which the rate of attenuation of the 𝐸𝐸-field along the 
direction of 𝒌𝒌�″ is said to be equal to the magnitude 𝑘𝑘″ of the vector 𝒌𝒌″. 
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c) The phase is obtained by examining the argument (𝜔𝜔𝑡𝑡 − 𝒌𝒌′ ∙ 𝒓𝒓) of the sine and cosine 
functions in the expressions of the 𝑬𝑬 and 𝑯𝑯 fields. In any plane that is perpendicular to the vector 
𝒌𝒌′, the phase 𝒌𝒌′ ∙ 𝒓𝒓 of a plane-wave is a constant. The phase difference between the fields in two 
planes that are both perpendicular to 𝒌𝒌′ at a separation distance of 𝑑𝑑 (in the direction of 𝒌𝒌′) thus 
equals 𝑘𝑘′𝑑𝑑. If we consider a point (𝒓𝒓0, 𝑡𝑡0) on a given phase-front and try to keep (𝜔𝜔𝑡𝑡 − 𝒌𝒌′ ∙ 𝒓𝒓) 
constant as 𝑡𝑡 rises from 𝑡𝑡0 to 𝑡𝑡0 + ∆𝑡𝑡, we must move from 𝒓𝒓0 to 𝒓𝒓0 + ∆𝒓𝒓 in the direction of 𝒌𝒌′ 
and in such a way as to ensure that 𝜔𝜔∆𝑡𝑡 − 𝒌𝒌′ ∙ ∆𝒓𝒓 = 0. The phase-front velocity is thus seen to 
be along the direction of 𝒌𝒌′ and have the magnitude 𝑣𝑣phase = ∆𝑟𝑟 ∆𝑡𝑡⁄ = 𝜔𝜔 𝑘𝑘′⁄ . 

d) The state of polarization of the plane-wave is determined by the two vectors 𝑬𝑬0
′  and 𝑬𝑬0

″. If 
either one of these vectors happens to be zero, or if 𝑬𝑬0

′  and 𝑬𝑬0
″ turn out to be parallel or anti-

parallel to each other (i.e., aligned along a straight line), the 𝐸𝐸-field will have a fix and unique 
direction in space at all times, in which case the plane-wave is said to be linearly-polarized along 
that direction. In contrast, when 𝑬𝑬0

′  and 𝑬𝑬0
″ are equal in magnitude and perpendicular to each 

other, the plane-wave is said to be circularly-polarized. 

e) A plane-wave is homogeneous when its 𝑘𝑘-vector is real; that is, when 𝒌𝒌″ = 0. Whereas the 
amplitudes of the 𝑬𝑬 and 𝑯𝑯 fields of an inhomogeneous plane-wave exponentially decay along the 
direction of 𝒌𝒌″, in the case of homogeneous plane-waves, the field amplitudes only vary 
periodically in space along the direction of 𝒌𝒌′— while also oscillating with frequency 𝜔𝜔 in time. 
The 𝑬𝑬 and 𝑯𝑯 fields of a homogeneous plane-wave do not grow or decay in spacetime. 
 
Problem 3) a) 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] ,        𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]. 

b) i)   𝜵𝜵 ∙ 𝑫𝑫(𝒓𝒓, 𝑡𝑡) = 𝜌𝜌free(𝒓𝒓, 𝑡𝑡)     →      i𝒌𝒌 ∙ 𝜀𝜀0𝜀𝜀(𝜔𝜔)𝑬𝑬0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] = 0   →     𝒌𝒌 ∙ 𝑬𝑬0 = 0. 

 ii)   𝜵𝜵 × 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) + 𝜕𝜕𝑫𝑫(𝒓𝒓,𝜔𝜔)
𝜕𝜕𝜔𝜔

 

 →  i𝒌𝒌 × 𝑯𝑯0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 – 𝜔𝜔𝜔𝜔) = −i𝜔𝜔𝜀𝜀0𝜀𝜀(𝜔𝜔)𝑬𝑬0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 – 𝜔𝜔𝜔𝜔)      →        𝒌𝒌 × 𝑯𝑯0 = −𝜀𝜀0𝜀𝜀(𝜔𝜔)𝜔𝜔𝑬𝑬0. 

 iii)   𝜵𝜵 × 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜕𝜕𝑩𝑩(𝒓𝒓,𝜔𝜔)
𝜕𝜕𝜔𝜔

 

 →  i𝒌𝒌 × 𝑬𝑬0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 – 𝜔𝜔𝜔𝜔) = i𝜔𝜔𝜇𝜇0𝜇𝜇(𝜔𝜔)𝑯𝑯0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 – 𝜔𝜔𝜔𝜔)        →        𝒌𝒌 × 𝑬𝑬0 = 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔𝑯𝑯0. 

 iv)   𝜵𝜵 ∙ 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 0    →      i𝒌𝒌 ∙ 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝑯𝑯0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] = 0     →       𝒌𝒌 ∙ 𝑯𝑯0 = 0. 

c) 𝒌𝒌 ∙ 𝑬𝑬0 = 0   →     𝑘𝑘𝑥𝑥𝐸𝐸0𝑥𝑥 + 𝑘𝑘𝑦𝑦𝐸𝐸0𝑦𝑦 + 𝑘𝑘𝑧𝑧𝐸𝐸0𝑧𝑧 = 0    →    𝐸𝐸0𝑧𝑧 = −(𝑘𝑘𝑥𝑥𝐸𝐸0𝑥𝑥 + 𝑘𝑘𝑦𝑦𝐸𝐸0𝑦𝑦) 𝑘𝑘𝑧𝑧⁄ . 

d) Multiply both sides of Eq.(ii) into 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔, then substitute 𝒌𝒌 × 𝑬𝑬0 for 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔𝑯𝑯0 from 
Eq.(iii) to arrive at 

 𝒌𝒌 × (𝒌𝒌 × 𝑬𝑬0) = −𝜇𝜇0𝜀𝜀0𝜔𝜔2𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔)𝑬𝑬0   →   (𝒌𝒌 ∙ 𝑬𝑬0)𝒌𝒌 − (𝒌𝒌 ∙ 𝒌𝒌)𝑬𝑬0 = −(𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔)𝑬𝑬0 

 →   𝒌𝒌 ∙ 𝒌𝒌 = (𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔). 

Traditionally, the refractive index is defined as 𝑛𝑛(𝜔𝜔) = �𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔). Consequently, the above 
dispersion relation may equivalently be written as 𝑘𝑘2 = [𝑛𝑛(𝜔𝜔)𝜔𝜔 𝑐𝑐⁄ ]2. 
 

from Eq.(i) 0 
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Problem 4) a) The correct expression for the Poynting vector is 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬′(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯′(𝒓𝒓, 𝑡𝑡). 

b) Real{𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯(𝒓𝒓, 𝑡𝑡)} = Real{[𝑬𝑬′(𝒓𝒓, 𝑡𝑡) + i𝑬𝑬″(𝒓𝒓, 𝑡𝑡)] × [𝑯𝑯′(𝒓𝒓, 𝑡𝑡) + i𝑯𝑯″(𝒓𝒓, 𝑡𝑡)]} 

 = Real{[𝑬𝑬′ × 𝑯𝑯′ − 𝑬𝑬″ × 𝑯𝑯″] + i[𝑬𝑬′ × 𝑯𝑯″ + 𝑬𝑬″ × 𝑯𝑯′]} 

 = 𝑬𝑬′ × 𝑯𝑯′ − 𝑬𝑬″ × 𝑯𝑯″. 

The presence of 𝑬𝑬″ × 𝑯𝑯″ causes the above expression to differ from that obtained in part (a), 
which indicates that the Poynting vector 𝑺𝑺(𝒓𝒓, 𝑡𝑡) should not be written as Real{𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯(𝒓𝒓, 𝑡𝑡)}. 
 
Problem 5) a) In the dispersion relation, 𝒌𝒌 ∙ 𝒌𝒌 = [𝑛𝑛(𝜔𝜔)𝜔𝜔 𝑐𝑐⁄ ]2, we have 𝒌𝒌 ∙ 𝒌𝒌 = (𝒌𝒌′ + i𝒌𝒌″) ∙
(𝒌𝒌′ + i𝒌𝒌″) = 𝑘𝑘′2 − 𝑘𝑘″2 + i2𝒌𝒌′ ∙ 𝒌𝒌″. Since the expression on the right-hand side of the dispersion 
relation is real, equating it to 𝒌𝒌 ∙ 𝒌𝒌 implies that the imaginary part 2𝒌𝒌′ ∙ 𝒌𝒌″ of 𝒌𝒌 ∙ 𝒌𝒌 must be zero; 
that is, 𝒌𝒌′ is orthogonal to 𝒌𝒌″. Equality of the real parts then yields 𝑘𝑘′2 − 𝑘𝑘″2 = [𝑛𝑛(𝜔𝜔)𝜔𝜔 𝑐𝑐⁄ ]2. 
Since the right-hand side of this equation is real and positive, we must have 𝑘𝑘′ > 𝑘𝑘″. 

b) 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝑡𝑡⁄     →     i𝒌𝒌 × 𝑬𝑬0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] = i𝜔𝜔𝜇𝜇0𝜇𝜇(𝜔𝜔)𝑯𝑯0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] 

 →     𝑯𝑯0 = 𝒌𝒌 × 𝑬𝑬0
𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔

 
. 

c) 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½Real{𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯∗(𝒓𝒓, 𝑡𝑡)} 

 = ½Real�𝑬𝑬0𝑒𝑒i[(𝒌𝒌′+i𝒌𝒌″) ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔] × 𝑯𝑯0
∗𝑒𝑒−i[(𝒌𝒌′−i𝒌𝒌″) ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔]� 

 = 𝑒𝑒−2𝒌𝒌
″∙ 𝒓𝒓 

2𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔
Real{𝑬𝑬0 × (𝒌𝒌∗ × 𝑬𝑬0

∗)} = 𝑒𝑒−2𝒌𝒌
″∙ 𝒓𝒓 

2𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔
Real{(𝑬𝑬0 ∙ 𝑬𝑬0

∗)𝒌𝒌∗ − (𝑬𝑬0 ∙ 𝒌𝒌∗)𝑬𝑬0
∗}. 

Considering that 𝑬𝑬0 ∙ 𝑬𝑬0
∗ = (𝑬𝑬0

′ + i𝑬𝑬0
″) ∙ (𝑬𝑬0

′ − i𝑬𝑬0
″) = 𝑬𝑬0

′2 + 𝑬𝑬0
″2 is real, the first term on the 

right-hand side of the above equation simplifies to Real{(𝑬𝑬0 ∙ 𝑬𝑬0
∗)𝒌𝒌∗} = (𝑬𝑬0

′2 + 𝑬𝑬0
″2)𝒌𝒌′. As for the 

second term, we write 

 𝒌𝒌∗ × (𝑬𝑬0 × 𝑬𝑬0
∗) = (𝒌𝒌∗ ∙ 𝑬𝑬0

∗)𝑬𝑬0 − (𝒌𝒌∗ ∙ 𝑬𝑬0)𝑬𝑬0
∗ 

 →   (𝒌𝒌′ − i𝒌𝒌″) × [(𝑬𝑬0
′ + i𝑬𝑬0

″) × (𝑬𝑬0
′ − i𝑬𝑬0

″)] = (𝒌𝒌 ∙ 𝑬𝑬0)∗𝑬𝑬0 − (𝑬𝑬0 ∙ 𝒌𝒌∗)𝑬𝑬0
∗ 

 →   (𝒌𝒌′ − i𝒌𝒌″) × [−2i(𝑬𝑬0
′ × 𝑬𝑬0

″)] = −(𝑬𝑬0 ∙ 𝒌𝒌∗)𝑬𝑬0
∗ 

 →    2𝒌𝒌″ × (𝑬𝑬0
′ × 𝑬𝑬0

″) + i2𝒌𝒌′ × (𝑬𝑬0
′ × 𝑬𝑬0

″) = (𝑬𝑬0 ∙ 𝒌𝒌∗)𝑬𝑬0
∗. 

Thus, we find that Real{(𝑬𝑬0 ∙ 𝒌𝒌∗)𝑬𝑬0
∗} = 2𝒌𝒌″ × (𝑬𝑬0

′ × 𝑬𝑬0
″). Consequently, 

 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 =  [(𝑬𝑬0′2 + 𝑬𝑬0″2)𝒌𝒌′ − 2𝒌𝒌″× (𝑬𝑬0′  × 𝑬𝑬0″)]exp(−2𝒌𝒌″∙ 𝒓𝒓)
2𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔

 
. 

The first term of the above expression is along the direction of 𝒌𝒌′, which, in accordance with 
the results obtained in part (a), is orthogonal to 𝒌𝒌″. The second term of the expression is also 
seen to be orthogonal to 𝒌𝒌″ (due to cross-multiplication). Therefore, the time-averaged Poynting 
vector has no component along the direction of 𝒌𝒌″. 
 

In consequence of  
Maxwell’s 1st equation 0 


