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Opti 501 Final Exam Solutions 12/15/2020 

Problem 1)  𝑛𝑛𝑎𝑎(𝜔𝜔) = �𝜇𝜇𝑎𝑎(𝜔𝜔)𝜀𝜀𝑎𝑎(𝜔𝜔) = �𝜀𝜀𝑎𝑎(𝜔𝜔). Similarly, 𝑛𝑛𝑏𝑏(𝜔𝜔) = �𝜇𝜇𝑏𝑏(𝜔𝜔)𝜀𝜀𝑏𝑏(𝜔𝜔) = �𝜀𝜀𝑏𝑏(𝜔𝜔). 

a) 𝒌𝒌(i) = 𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑦𝑦𝒚𝒚� + 𝑘𝑘𝑧𝑧
(i)𝒛𝒛� = 𝑛𝑛𝑎𝑎(𝜔𝜔)(𝜔𝜔 𝑐𝑐⁄ )(sin𝜃𝜃 𝒙𝒙� − cos 𝜃𝜃 𝒛𝒛�). 

 𝒌𝒌(r) = 𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑦𝑦𝒚𝒚� + 𝑘𝑘𝑧𝑧
(r)𝒛𝒛� = 𝑛𝑛𝑎𝑎(𝜔𝜔)(𝜔𝜔 𝑐𝑐⁄ )(sin𝜃𝜃 𝒙𝒙� + cos 𝜃𝜃 𝒛𝒛�). 

 𝒌𝒌(t) = 𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑦𝑦𝒚𝒚� + 𝑘𝑘𝑧𝑧
(t)𝒛𝒛� = 𝑛𝑛𝑎𝑎(𝜔𝜔)(𝜔𝜔 𝑐𝑐⁄ ) sin𝜃𝜃 𝒙𝒙� + 𝑘𝑘𝑧𝑧

(t)𝒛𝒛�. 

b) Dispersion relation: 𝒌𝒌 ∙ 𝒌𝒌 = 𝑘𝑘2 = (𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇𝑏𝑏(𝜔𝜔)𝜀𝜀𝑏𝑏(𝜔𝜔)  →   𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑧𝑧2 = (𝜔𝜔 𝑐𝑐⁄ )2𝑛𝑛𝑏𝑏2(𝜔𝜔) 

 →     𝑘𝑘𝑧𝑧
(t) = ±�(𝜔𝜔 𝑐𝑐⁄ )2𝑛𝑛𝑏𝑏2(𝜔𝜔) − 𝑘𝑘𝑥𝑥2      →       𝑘𝑘𝑧𝑧

(t) = −i(𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑎𝑎2(𝜔𝜔) sin2 𝜃𝜃 − 𝑛𝑛𝑏𝑏2(𝜔𝜔). 

Since 𝜃𝜃 > 𝜃𝜃𝑐𝑐, we have 𝑛𝑛𝑎𝑎 sin𝜃𝜃 > 𝑛𝑛𝑎𝑎 sin𝜃𝜃𝑐𝑐 = 𝑛𝑛𝑏𝑏. Therefore, 𝑘𝑘𝑧𝑧2 is negative, which makes 
its square root imaginary. We have chosen the negative sign for 𝑘𝑘𝑧𝑧

(t) to ensure the exponential 
decay (as opposed to growth) of the evanescent field away from the interface (i.e., as 𝑧𝑧 → −∞). 
This is now guaranteed, since the 𝑧𝑧-dependent factor in the expression of the fields, namely, 

 exp(i𝑘𝑘𝑧𝑧
(t)𝑧𝑧) = exp[(𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑎𝑎2(𝜔𝜔) sin2 𝜃𝜃 − 𝑛𝑛𝑏𝑏2(𝜔𝜔) 𝑧𝑧], 

approaches zero when 𝑧𝑧 → −∞. 

c) 𝑩𝑩(t)(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝐻𝐻0𝑦𝑦𝒚𝒚� exp[i(𝒌𝒌(t) ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]. 

For 𝜵𝜵 ∙ 𝑩𝑩(t) = i𝒌𝒌(t) ∙ 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝐻𝐻0𝑦𝑦𝒚𝒚� exp[i(𝒌𝒌(t) ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] to vanish it is necessary to have 
𝒌𝒌(t) ∙ 𝒚𝒚� = (𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑧𝑧

(t)𝒛𝒛�) ∙ 𝒚𝒚� = 0, which obviously holds, since 𝒌𝒌(t) has no 𝑦𝑦-component. 

d) 𝜵𝜵 × 𝑯𝑯 = 𝜕𝜕𝑡𝑡𝑫𝑫     →      i𝒌𝒌(t) × 𝑯𝑯0
(t) = −i𝜔𝜔𝜀𝜀0𝜀𝜀𝑏𝑏(𝜔𝜔)𝑬𝑬0

(t) 

 →     (𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑧𝑧
(t)𝒛𝒛�) × 𝐻𝐻0𝑦𝑦𝒚𝒚� = −(𝜔𝜔 𝑐𝑐𝑍𝑍0⁄ )𝑛𝑛𝑏𝑏2(𝜔𝜔)(𝐸𝐸0𝑥𝑥𝒙𝒙� + 𝐸𝐸0𝑦𝑦𝒚𝒚� + 𝐸𝐸0𝑧𝑧𝒛𝒛�). 

Equating the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 components appearing on the two sides of the above equation, we find 

 i(𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑎𝑎2(𝜔𝜔) sin2 𝜃𝜃 − 𝑛𝑛𝑏𝑏2(𝜔𝜔)𝐻𝐻0𝑦𝑦 = −(𝜔𝜔 𝑐𝑐𝑍𝑍0⁄ )𝑛𝑛𝑏𝑏2(𝜔𝜔)𝐸𝐸0𝑥𝑥, 

 𝐸𝐸0𝑦𝑦 = 0, 

 (𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎(𝜔𝜔) sin𝜃𝜃 𝐻𝐻0𝑦𝑦 = −(𝜔𝜔 𝑐𝑐𝑍𝑍0⁄ )𝑛𝑛𝑏𝑏2(𝜔𝜔)𝐸𝐸0𝑧𝑧
(t). 

Further simplification now yields 

 𝐸𝐸0𝑥𝑥 = − i𝑍𝑍0𝐻𝐻0𝑦𝑦�𝑛𝑛𝑎𝑎2(𝜔𝜔) sin2 𝜃𝜃 − 𝑛𝑛𝑏𝑏2(𝜔𝜔) 𝑛𝑛𝑏𝑏2(𝜔𝜔)� , 

 𝐸𝐸0𝑧𝑧 = −𝑍𝑍0𝐻𝐻0𝑦𝑦𝑛𝑛𝑎𝑎(𝜔𝜔) sin 𝜃𝜃 𝑛𝑛𝑏𝑏2(𝜔𝜔)⁄ . 

Complete expressions for the evanescent 𝑬𝑬 and 𝑯𝑯 fields may finally be written down, as follows: 

 𝑬𝑬(t)(𝒓𝒓, 𝑡𝑡) = (𝐸𝐸0𝑥𝑥𝒙𝒙� + 𝐸𝐸0𝑧𝑧𝒛𝒛�) exp[i(𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑧𝑧
(𝑡𝑡)𝑧𝑧 − 𝜔𝜔𝑡𝑡)] 

 = −(𝑍𝑍0𝐻𝐻0𝑦𝑦 𝑛𝑛𝑏𝑏⁄ )�i�(𝑛𝑛𝑎𝑎 sin𝜃𝜃 𝑛𝑛𝑏𝑏⁄ )2 − 1 𝒙𝒙� + (𝑛𝑛𝑎𝑎 sin𝜃𝜃 𝑛𝑛𝑏𝑏⁄ )𝒛𝒛�� 

 × exp�(𝑛𝑛𝑏𝑏𝜔𝜔 𝑐𝑐⁄ )�(𝑛𝑛𝑎𝑎 sin𝜃𝜃 𝑛𝑛𝑏𝑏⁄ )2 − 1 𝑧𝑧� exp[i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝑡𝑡)]. 

The dispersion relation 
𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑧𝑧2 = (𝜔𝜔 𝑐𝑐⁄ )2𝑛𝑛𝑎𝑎2(𝜔𝜔) is 
used here. Also invoked is 
the generalized Snell’s law. 

replacing 𝜀𝜀0 with 1 (𝑐𝑐𝑍𝑍0)⁄  
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 𝑯𝑯(t)(𝒓𝒓, 𝑡𝑡) = 𝐻𝐻0𝑦𝑦𝒚𝒚� exp�(𝑛𝑛𝑏𝑏𝜔𝜔 𝑐𝑐⁄ )�(𝑛𝑛𝑎𝑎 sin𝜃𝜃 𝑛𝑛𝑏𝑏⁄ )2 − 1 𝑧𝑧� exp[i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝑡𝑡)]. 

e) In the absence of free charges (i.e., 𝜌𝜌free = 0), Maxwell’s 1st equation (within the transmission 
medium) reduces to 𝜵𝜵 ∙ 𝑫𝑫(t) = 𝜀𝜀0𝜀𝜀𝑏𝑏(𝜔𝜔)𝜵𝜵 ∙ 𝑬𝑬(t) = 0. For the evanescent wave, the satisfaction 
this equation requires that 𝒌𝒌(t) ∙ 𝑬𝑬0

(t) vanish. This constraint is readily satisfied, since we have 

 𝒌𝒌(t) ∙ 𝑬𝑬0
(t) = 𝑘𝑘𝑥𝑥𝐸𝐸0𝑥𝑥 + 𝑘𝑘𝑧𝑧

(t)𝐸𝐸0𝑧𝑧 = (𝑛𝑛𝑎𝑎𝜔𝜔 𝑐𝑐⁄ ) sin𝜃𝜃 �−i(𝑍𝑍0𝐻𝐻0𝑦𝑦 𝑛𝑛𝑏𝑏⁄ )�(𝑛𝑛𝑎𝑎 sin𝜃𝜃 𝑛𝑛𝑏𝑏⁄ )2 − 1� 

 +[−i(𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃 − 𝑛𝑛𝑏𝑏2]�−𝑍𝑍0𝐻𝐻0𝑦𝑦𝑛𝑛𝑎𝑎 sin 𝜃𝜃 𝑛𝑛𝑏𝑏2⁄ � = 0. 

As for Maxwell’s 3rd equation, 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑡𝑡𝑩𝑩, we must show that 𝒌𝒌(t) × 𝑬𝑬0
(t) = 𝜔𝜔𝜇𝜇0𝜇𝜇(𝜔𝜔)𝑯𝑯0

(t). 

 𝑘𝑘𝑧𝑧
(t)𝐸𝐸0𝑥𝑥 − 𝑘𝑘𝑥𝑥𝐸𝐸0𝑧𝑧 = [−i(𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃 − 𝑛𝑛𝑏𝑏2][− i𝑍𝑍0𝐻𝐻0𝑦𝑦�𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃 − 𝑛𝑛𝑏𝑏2 𝑛𝑛𝑏𝑏2� ] 

 −(𝑛𝑛𝑎𝑎𝜔𝜔 𝑐𝑐⁄ ) sin𝜃𝜃 (−𝑍𝑍0𝐻𝐻0𝑦𝑦𝑛𝑛𝑎𝑎 sin𝜃𝜃 𝑛𝑛𝑏𝑏2⁄ ) 

 = −(𝜔𝜔 𝑐𝑐⁄ )[(𝑛𝑛𝑎𝑎 sin𝜃𝜃 𝑛𝑛𝑏𝑏⁄ )2 − 1]𝑍𝑍0𝐻𝐻0𝑦𝑦 + (𝜔𝜔 𝑐𝑐⁄ )(𝑛𝑛𝑎𝑎 sin𝜃𝜃 𝑛𝑛𝑏𝑏⁄ )2𝑍𝑍0𝐻𝐻0𝑦𝑦 

 = (𝜔𝜔 𝑐𝑐⁄ )𝑍𝑍0𝐻𝐻0𝑦𝑦 = 𝜔𝜔𝜇𝜇0𝐻𝐻0𝑦𝑦. 

f ) 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½Re(𝑬𝑬 × 𝑯𝑯∗) = ½Re�(𝐸𝐸0𝑥𝑥𝒙𝒙� + 𝐸𝐸0𝑧𝑧𝒛𝒛�) × 𝐻𝐻0𝑦𝑦
∗ 𝒚𝒚�� exp(2|𝑘𝑘𝑧𝑧

(t)|𝑧𝑧) 

 = ½Re�𝐸𝐸0𝑥𝑥𝐻𝐻0𝑦𝑦
∗ 𝒛𝒛� − 𝐸𝐸0𝑧𝑧𝐻𝐻0𝑦𝑦

∗ 𝒙𝒙�� exp�2(𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃 − 𝑛𝑛𝑏𝑏2 𝑧𝑧� 

 = 𝑍𝑍0|𝐻𝐻0𝑦𝑦|2(𝑛𝑛𝑎𝑎 sin𝜃𝜃 2𝑛𝑛𝑏𝑏2⁄ ) exp�(2𝑛𝑛𝑏𝑏𝜔𝜔 𝑐𝑐⁄ )�(𝑛𝑛𝑎𝑎 sin𝜃𝜃 𝑛𝑛𝑏𝑏⁄ )2 − 1 𝑧𝑧� 𝒙𝒙�. 

Note that the 𝑧𝑧-component of the time-averaged Poynting vector has disappeared from the 
above equation since 𝐸𝐸0𝑥𝑥𝐻𝐻0𝑦𝑦

∗  is purely imaginary. Also, the Poynting vector has no 𝑦𝑦-component. 
The energy flow rate does have a component along the 𝑥𝑥-axis, which rapidly decays as 𝑧𝑧 → −∞. 
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Problem 2) a) From the dispersion relation, the magnitude of the 𝑘𝑘-vector in free space is found 
to be 𝑘𝑘 = 𝜔𝜔 𝑐𝑐⁄ . Considering that both 𝒌𝒌1 and 𝒌𝒌2 are in the 𝑥𝑥𝑧𝑧-plane (i.e., 𝑘𝑘𝑦𝑦 = 0), we will have 

 𝒌𝒌1 = (𝜔𝜔 𝑐𝑐⁄ )(cos𝜃𝜃 𝒙𝒙� + sin𝜃𝜃 𝒛𝒛�). (1) 

 𝑬𝑬1(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬01 exp[i(𝒌𝒌1 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] = 𝐸𝐸0𝒚𝒚� exp[i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos 𝜃𝜃 + 𝑧𝑧 sin𝜃𝜃 − 𝑐𝑐𝑡𝑡)]. (2) 

 𝑯𝑯1(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯01 exp[i(𝒌𝒌1 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] 
 = (𝐸𝐸0 𝑍𝑍0⁄ )(− sin𝜃𝜃 𝒙𝒙� + cos 𝜃𝜃 𝒛𝒛�) exp[i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos 𝜃𝜃 + 𝑧𝑧 sin 𝜃𝜃 − 𝑐𝑐𝑡𝑡)]. (3) 
Similarly, 

 𝒌𝒌2 = (𝜔𝜔 𝑐𝑐⁄ )(cos𝜃𝜃 𝒙𝒙� − sin𝜃𝜃 𝒛𝒛�). (4) 

 𝑬𝑬2(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬02 exp[i(𝒌𝒌2 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] = 𝐸𝐸0𝒚𝒚� exp[i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃 − 𝑧𝑧 sin 𝜃𝜃 − 𝑐𝑐𝑡𝑡)]. (5) 

 𝑯𝑯2(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯02 exp[i(𝒌𝒌2 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] 
 = (𝐸𝐸0 𝑍𝑍0⁄ )(sin𝜃𝜃 𝒙𝒙� + cos 𝜃𝜃 𝒛𝒛�) exp[i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos 𝜃𝜃 − 𝑧𝑧 sin𝜃𝜃 − 𝑐𝑐𝑡𝑡)]. (6) 

b) Considering that 𝐻𝐻𝑦𝑦 = 0 and that 𝐻𝐻𝑥𝑥 and 𝐻𝐻𝑧𝑧 do not depend on the 𝑦𝑦-coordinate, the expression 
of the curl of 𝑯𝑯 (evaluated in the plane of the sheet at 𝑧𝑧 = 0) is simplified, as follows: 

 𝜵𝜵 × 𝑯𝑯 = (𝜕𝜕𝑧𝑧𝐻𝐻𝑥𝑥 − 𝜕𝜕𝑥𝑥𝐻𝐻𝑧𝑧)𝒚𝒚� ≅ �− 2𝐸𝐸0 sin𝜃𝜃
𝑍𝑍0𝑑𝑑

− i𝐸𝐸0𝜔𝜔 cos2 𝜃𝜃
𝑍𝑍0𝑐𝑐

� 𝒚𝒚� 𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃−𝑐𝑐𝑡𝑡). (7) 

 
 

Since 𝑫𝑫(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀0𝑬𝑬 + 𝑷𝑷 = 𝜀𝜀0𝐸𝐸0𝒚𝒚�𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃−𝑐𝑐𝑡𝑡) + 𝑃𝑃0𝒚𝒚�𝑒𝑒i(𝜅𝜅0𝑥𝑥−𝜔𝜔𝑡𝑡−𝜑𝜑0), equating 𝜵𝜵 × 𝑯𝑯 of 
Eq.(7) with 𝜕𝜕𝑡𝑡𝑫𝑫 = −i𝜔𝜔𝑫𝑫(𝒓𝒓, 𝑡𝑡) reveals that 𝜅𝜅0 = (𝜔𝜔 𝑐𝑐⁄ ) cos 𝜃𝜃. 

c) Continuity of 𝑬𝑬∥ is satisfied, as the 𝐸𝐸-field on both sides of the sheet is 𝐸𝐸0𝒚𝒚� 𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃−𝑐𝑐𝑡𝑡). 
This is also the 𝐸𝐸-field inside the sheet, acting on the electric dipoles of the material. 

Similarly, the continuity of 𝑩𝑩⊥ is automatically satisfied, as the perpendicular 𝐵𝐵-field on 
both sides of the sheet is seen from Eqs.(3) and (6) to be 𝜇𝜇0𝐻𝐻𝑧𝑧 = (𝐸𝐸0 𝑐𝑐⁄ ) cos 𝜃𝜃 𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃−𝑐𝑐𝑡𝑡). 

The tangential 𝐻𝐻-field (i.e., 𝐻𝐻𝑥𝑥) is discontinuous at the surface of the sheet, being equal to 
±(𝐸𝐸0 𝑍𝑍0⁄ ) sin𝜃𝜃 𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃−𝑐𝑐𝑡𝑡) on the left- and right-hand sides, respectively; see Eqs.(3) and 
(6). Inside the dielectric material, the 𝐷𝐷-field is 𝑫𝑫(𝒓𝒓, 𝑡𝑡) = (𝜀𝜀0𝐸𝐸0 + 𝑃𝑃0𝑒𝑒−i𝜑𝜑0)𝒚𝒚�𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃−𝑐𝑐𝑡𝑡). 
Considering that, in the absence of free currents (i.e., 𝑱𝑱free = 0), 𝜵𝜵 × 𝑯𝑯 = 𝜕𝜕𝑡𝑡𝑫𝑫 = −i𝜔𝜔𝑫𝑫, and that 
the sheet thickness 𝑑𝑑 is sufficiently small, we arrive at 

 2𝐸𝐸0 sin𝜃𝜃
𝑍𝑍0𝑑𝑑

≅ i𝜔𝜔(𝜀𝜀0𝐸𝐸0 + 𝑃𝑃0𝑒𝑒−i𝜑𝜑0). (8) 

The approximate equality in the above equation becomes exact in the limit when 𝑑𝑑 → 0. The 
near equality in Eq.(8) could also be obtained with the aid of Eq.(7), where the first term on the 
right-hand side of Eq.(7) dominates the second term when 𝑑𝑑 ≪ 𝑐𝑐 𝜔𝜔⁄ = 𝜆𝜆0 2𝜋𝜋⁄ . 

d) For the incident beam at the location of the sheet (i.e., at 𝑧𝑧 = 0), we have 

 𝜵𝜵 × 𝑯𝑯(inc) = 𝜕𝜕𝑡𝑡𝑫𝑫(inc) = −i𝜔𝜔𝜀𝜀0𝑬𝑬(inc) = −�i𝐸𝐸0
(inc)𝜔𝜔
𝑍𝑍0𝑐𝑐

�𝒚𝒚� 𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃−𝑐𝑐𝑡𝑡). (9) 

𝜕𝜕𝑧𝑧𝐻𝐻𝑥𝑥 ≅ ∆𝐻𝐻𝑥𝑥 ∆𝑧𝑧⁄ = [𝐻𝐻𝑥𝑥(𝑥𝑥, 𝑧𝑧 = 𝑑𝑑 2⁄ , 𝑡𝑡) − 𝐻𝐻𝑥𝑥(𝑥𝑥, 𝑧𝑧 = −𝑑𝑑 2⁄ , 𝑡𝑡)] 𝑑𝑑⁄  

ordinary differentiation of 𝐻𝐻𝑧𝑧 with respect to 𝑥𝑥, since 𝐻𝐻𝑧𝑧 is continuous at 𝑧𝑧 = 0 
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The above contribution to the curl of the 𝐻𝐻-field at 𝑧𝑧 = 0 should now be added to Eq.(7). 
However, for 𝑑𝑑 ≪ 𝑐𝑐 𝜔𝜔⁄ = 𝜆𝜆0 2𝜋𝜋⁄ , we may ignore this contribution of the incident beam, just as 
we ignored the second term on the right-hand side of Eq.(7). Consequently, for a sufficiently thin 
sheet, 𝜵𝜵 × 𝑯𝑯 will be dominated by the discontinuity in 𝑯𝑯∥ across the sheet produced by the two 
radiated plane-waves. Given that 𝑫𝑫(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀0𝜀𝜀(𝜔𝜔)(𝐸𝐸0

(inc) + 𝐸𝐸0)𝒚𝒚�𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃−𝑐𝑐𝑡𝑡), application 
of Maxwell’s 2nd equation, 𝜵𝜵 × 𝑯𝑯 = 𝜕𝜕𝑡𝑡𝑫𝑫 = −i𝜔𝜔𝑫𝑫, now yields 

 (2𝐸𝐸0 sin 𝜃𝜃 𝑍𝑍0𝑑𝑑⁄ )𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃−𝑐𝑐𝑡𝑡) ≅ i𝜔𝜔𝜀𝜀0𝜀𝜀(𝜔𝜔)(𝐸𝐸0
(inc) + 𝐸𝐸0)𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑥𝑥 cos𝜃𝜃−𝑐𝑐𝑡𝑡). (10) 

Solving the above equation for the reflected field amplitude 𝐸𝐸0, we find 

 𝐸𝐸0 ≅ − 𝐸𝐸0
(inc)

1 + i[2𝑐𝑐 sin𝜃𝜃 𝜔𝜔𝜔𝜔(𝜔𝜔)𝑑𝑑⁄ ]      →     𝐸𝐸0 𝐸𝐸0
(inc)⁄ ≅ − 𝜋𝜋𝜔𝜔(𝜔𝜔)𝑑𝑑

𝜋𝜋𝜔𝜔(𝜔𝜔)𝑑𝑑 + i𝜆𝜆0 sin𝜃𝜃
 
. (11) 

e) The transmitted 𝐸𝐸-field is readily found from Eq.(10), as follows: 

 𝐸𝐸0
(trans) = 𝐸𝐸0

(inc) + 𝐸𝐸0 ≅
(2𝐸𝐸0 𝑍𝑍0𝑑𝑑⁄ ) sin𝜃𝜃

i𝜔𝜔𝜔𝜔0𝜔𝜔(𝜔𝜔)     →      𝐸𝐸0
(trans) 𝐸𝐸0

(inc)� ≅ i𝜆𝜆0 sin𝜃𝜃
𝜋𝜋𝜔𝜔(𝜔𝜔)𝑑𝑑 + i𝜆𝜆0 sin𝜃𝜃

 
. (12) 

Digression. Setting 𝜃𝜃 = 45°, and 𝜀𝜀(𝜔𝜔) = 𝜆𝜆0 (√2𝜋𝜋𝑑𝑑)⁄ , the reflection coefficient obtained from Eq.(11) will be 

 𝐸𝐸0 𝐸𝐸0
(inc)⁄ = −1 (1 + i)⁄ = 𝑒𝑒i3𝜋𝜋 4⁄ √2⁄ . (13) 

Similarly, Eq.(12) yields the transmission coefficient, as follows: 

 𝐸𝐸0
(trans) 𝐸𝐸0

(inc)� = i (1 + i)⁄ = 𝑒𝑒i𝜋𝜋 4⁄ √2⁄ . (14) 

Both the reflected and transmitted 𝐸𝐸-field amplitudes are seen to be 1 √2⁄  times that of the incident 𝐸𝐸-field. 
While the reflected 𝐸𝐸-field is phase-shifted (relative to the incident 𝐸𝐸-field) by 135°, the relative phase-shift of the 
transmitted 𝐸𝐸-field is 45°. The thin dielectric sheet thus exhibits the essential characteristics of a 50 50⁄  beam-
splitter. Note that, for this to hold to a good approximation, the required value of 𝜀𝜀(𝜔𝜔), namely, 𝜆𝜆0 (√2𝜋𝜋𝑑𝑑)⁄ , may 
have to be impractically large, given that 𝑑𝑑 needs to be substantially smaller than the incident wavelength. In fact, 
recalling that 𝑛𝑛(𝜔𝜔) = �𝜀𝜀(𝜔𝜔), the relation between 𝑑𝑑 and the wavelength 𝜆𝜆0 𝑛𝑛⁄  inside the dielectric medium will be 
𝜆𝜆0 𝑛𝑛𝑑𝑑⁄ = √2𝜋𝜋𝑛𝑛. For 𝑑𝑑 to be only one-tenth of 𝜆𝜆0 𝑛𝑛⁄ , it will be necessary to have 𝑛𝑛 = 2.25. 
 

𝜆𝜆0 = 2𝜋𝜋𝑐𝑐 𝜔𝜔⁄  


