Opti 501 Final Exam Solutions 12/12/2017

Problem 1)

a) The dispersion relation k-k = p(w)s(w)(w/c)? yields k&k-kk = k? = [wn(w)/c]?,
resulting in k = + wn(w)/c. Therefore, k' = tk,n'(w)k and k" = +k,n"(w)K, where
k, = w/c is the wave-number in free space. In what follows, we shall use the plus sign for both
k' and k", thus selecting a propagation direction that is along & (rather than opposite to k).

expli(k-r — wt)] = exp{i[(k’ + ik")K-r — wt]} = exp(—k"K 1) X exp[i(k'K -1 — wt)]
= exp(—k,n"K-1r) X expli(k,n'K - r — wt)]. (1)

b) Let E, = E,,X + E,,,J + E,,Z be the E-field amplitude for the plane-wave. In accordance with
Maxwell’s first equation, we set k- E, = kk - E, = 0, which restricts the z-component of the E-
field to E,, = — (E, oKy + E,(K))/K,. Aside from this constraint, the remaining components E,,

and E,, of the E-field are completely arbitrary. The H-field of the plane-wave is obtained from
Maxwell’s third equation k X E, = wu,u(w)H,. Given that u(w) = 1.0 and k = kK, we find

H, = (ﬂow)_lkﬁ XE,= Zo_l(k/ko)ﬁ X E,
= [n(w)/Z,](k,.X + Ky + K 22) X (ExoX + E,,y + E,Z)
= [TL((D)/ZO] [(}eyEzo - }ezEyo)-/x\ + (’%ZEXO - }eszo)y + (’%xEyo - }eyExo)i]- (2)

The H-field amplitude H, is thus fully specified in terms of n(w), the propagation direction
K, and the E-field amplitude E .

c) (S(r,t)) = YeRe{E(r,t) X H*(r,t)}
= ¥Re{E, exp(—k,n"& - 1) GW)]
X H} exp(—k,n"® - 1) GXW)]}

= %Re{E, X [(n*/Z,)R X E;]} exp(—2k,n"R - 1) «{Use Ax (BxC) =(4-C)B—(A-B)C|

= Re{(n*/Z)[(E, - E)K—(ﬁo//)E*}exp( 2k,n"R - T)
= 1[0’ (0)/Z,)(E, - E%) exp[—2k,n" (w)R - T]R. 3)

It is seen that the time-averaged energy flows along the K direction, that the energy flux is
proportional to the real part n'(w) of the refractive index, and also proportional to the E-field
intensity E, - Eg = |E|® 4+ |E,|* + |E,l|? and that the energy flux declines exponentially
along the K direction, with an absorption coefficient @ = 2k,n" (w) = (4 /2,)n" (w).

Note that, while the exponential rate of decay of the field amplitudes along K is k,n"(w),
the Poynting vector, having contributions from both E and H fields, decays at twice that rate. In
the optics literature, the parameter a = 2k,n"(w) = (4n/A,)n"(w) is referred to as the
“absorption coefficient” of the material medium.
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When f(x) =v1+x=(1+x)"”, we will have df(x)/dx = %(1 + x)™* and d?f(x)/dx? =
—14(1 + x)~3/2. Therefore,

fQ)=f(0)+ %1 +x)7 _x—%(1+x)73? _x%+-=1+%x—Vox? + -

d) n(w)=+Ve x \/W = e'[1+ %i(e"/e)] = Ve + lez—,
Thus, to first order in " /&', we will have n'(w) = m and n"(w) = &" (w)/Z\/m.
Problem 3)
a) The dispersion relation, k% + k3 + k7 = (w/c)*u(w)e(w), yields
k® = [(w/c)?e, — k2. (1)
kP = J(w/0)?e, — k2. )

b) Maxwell’s 3" equation, V X E = — dB/0t, yields k x E = wu,H. Consequently, the H-field
amplitude H, is expressed in terms of the E-field amplitude E,, the wave-vector k, and the
oscillation frequency w as H, = (u,w) (kX + k,2) X E,. We will have

E@) (r,£) = EOPF expliliyx + kP2 — wi)]. )
HE (1, 0) = (uy0) k2 + £22] x [EC9] explilk,x + 2z — wb)]. 4
E®D(r ¢) = E(Ebi)y expli(k,x + k;b)Z — wt)]. ()
HOD(1,1) = (y0) [k ® £ k2] x [EP9] explilieex £ k2 —wD)].  (6)

¢) Continuity of E;, and H, at z = + d/2:

E,:  EXY exp[hikVd] = ECY exp[ikP d] + EE™ exp[-1ik{Pd]. (7)
Hy —kPEPY exp[1ikPd] = —kPECY exp[1ik P d] + kP EC exp[—%ikPd]. (8)
Dividing Eq.(8) by Eq.(7) eliminates their common factors, as follows:

P EPY exp(ikPa) - ES
kD B exp(ik®a) + E$)

)



Boundary conditions at z = — d /2:
E,:  EX7 exp[hikVd] = ECY exp[—14ikPd] + EE7 exp[ik{Pd]. (10)
Hy kP E®D exp[1ikPd] = —kPE exp[-1ikPd] + kP EC™ exp[1ikPd]. (11)

Once again, dividing Eq.(11) by Eq.(10) removes their common factors, yielding

5 exp(ik®a) - 5E
kP T 5 exp(ikPa) + BT

(12)

d) A comparison of Eqs.(9) and (12) now enables one to solve for the ratio E™ / E®™ namely,

B exp(®a) - EC7 B exp(ik@a) - 5
T exp(k®a) + 20 50 explikPa) 4 5D

- E(faﬂ @) exp ikMd] + E§a+)2 exp[ikga)d] - E(fa_)z exp[ikga)d] - W
= ETVES D explzikd] - ESY” explikPd] + EC ™" explik(V d] - EE2ES

— E@ =@ o gD o4 g, (13)

The solution E§a+) = Ega_) represents the so-called “even modes” of the waveguide, while
the solution E®* = —E®) represents the “odd modes.”

e) Substituting the above solutions in either Eq.(9) or Eq.(12) now yields

sinh(%ik®d)
— &y even modes,
ib) . exp(ikga)d) F1_ exp(l/zikga)d) F exp(—i/zikga)d) . cosh(¥ik,” d) (14)
kD exp(ik®a)+1 exp(%ik@a) + exp(-1ikPa) cosh(1ik@a)
————%&5—~; odd modes.
ksinh(l/zikz d)

Thus the characteristic equation for even modes is tanh[%ik®d] = k™ /k®, whereas that

for odd modes is tanh[%ikPd] = k) /K. These complex-valued characteristic equations must
be solved numerically to yield the allowed k, values. In general, the equation admits a number
of distinct solutions that correspond to the various stable modes of the waveguide. The metallic
nature of the cladding in this problem guarantees that the allowed values of k, will be complex,
confirming that the guided modes will attenuate as they propagate forward along the x-axis.

Digression: The solutions obtained are quite general, and can be applied to any pair of values for
&, and &,. For instance, if both &, and ¢, are real and positive, with &, > ¢g,, we will have a
dielectric waveguide. In this case, k, may be real (for guided modes) or complex (for leaky
modes) — although it cannot be purely imaginary, because then both k;a) and k;b) will be real, in
which case the characteristic equations itan[%kPd] = k{® /k{* and itan[%kPd] = kK /K>
will have no solutions.




