Problem 7.75) a) In the free-space region, the incident *k*-vector is $\mathbf{k}^{(i)} = (\omega/c)(\sin \theta \hat{\mathbf{x}} + \cos \theta \hat{\mathbf{z}})$. The *E* and *H* fields may be written in terms of $\mathbf{k}^{(i)}$, ω , and the *E*-field amplitude E_0 , as follows:

$$
\mathbf{E}^{(i)}(\mathbf{r},t) = \text{Re}\{E_0(\cos\theta\,\hat{\mathbf{x}} - \sin\theta\,\hat{\mathbf{z}})\exp[i(\mathbf{k}^{(i)}\cdot\mathbf{r} - \omega t)]\},\
$$

$$
\mathbf{H}^{(i)}(\mathbf{r},t) = \text{Re}\{Z_0^{-1}E_0\hat{\mathbf{y}}\exp[i(\mathbf{k}^{(i)}\cdot\mathbf{r} - \omega t)]\}.
$$

b) For the reflected beam, the k-vector is $\mathbf{k}^{(r)} = (\omega/c)(\sin \theta \hat{x} - \cos \theta \hat{z})$, and the E and H fields, expressed as functions of $\mathbf{k}^{(r)}$, ω , the Fresnel reflection coefficient ρ_p , and the incident Efield amplitude E_0 , are

$$
\mathbf{E}^{(r)}(\mathbf{r},t) = \text{Re}\{\rho_p E_0(\cos\theta\,\hat{\mathbf{x}} + \sin\theta\,\hat{\mathbf{z}})\,\exp[i(\mathbf{k}^{(r)}\cdot\mathbf{r} - \omega t)]\},
$$

$$
\mathbf{H}^{(r)}(\mathbf{r},t) = -\,\text{Re}\{Z_0^{-1}\rho_p E_0\hat{\mathbf{y}}\,\exp[i(\mathbf{k}^{(r)}\cdot\mathbf{r} - \omega t)]\}.
$$

c) For the transmitted beam, the k-vector is $\mathbf{k}^{(t)} = (\omega/c) [\sin \theta \hat{x} + \sqrt{\varepsilon(\omega) - \sin^2 \theta} \hat{z}]$. This is derived from the continuity of k_x across the interface, and from the dispersion relation of the plasma, namely, $k_x^2 + k_z^2 = (\omega/c)^2 \mu(\omega) \varepsilon(\omega)$. The E and H fields, written in terms of $\mathbf{k}^{(t)}$, ω , the Fresnel transmission coefficient τ_p , and the incident *E*-field amplitude E_0 , are

$$
\mathbf{E}^{(t)}(\mathbf{r},t) = \text{Re}\Big\{\tau_p E_0 \cos\theta \left(\widehat{\mathbf{x}} - \frac{\sin\theta}{\sqrt{\varepsilon(\omega)-\sin^2\theta}}\widehat{\mathbf{z}}\right) \exp\big[i(\mathbf{k}^{(t)}\cdot\mathbf{r} - \omega t)\big]\Big\},
$$

$$
\mathbf{H}^{(t)}(\mathbf{r},t) = \text{Re}\Big\{\frac{\tau_p \varepsilon(\omega)E_0 \cos\theta}{Z_0\sqrt{\varepsilon(\omega)-\sin^2\theta}}\widehat{\mathbf{y}} \exp\big[i(\mathbf{k}^{(t)}\cdot\mathbf{r} - \omega t)\big]\Big\}.
$$

In deriving the above expressions, we used the constraints imposed by Maxwell's $1st$ and $3rd$ equations, namely, $\mathbf{k}^{(t)} \cdot \mathbf{E}^{(t)} = k_x^{(t)} E_x^{(t)} + k_z^{(t)} E_z^{(t)} = 0$ and $\mathbf{k}^{(t)} \times \mathbf{E}^{(t)} = \mu_0 \mu(\omega) \omega \mathbf{H}^{(t)}$.

d) The tangential components $E_x^{(1)}$, $E_x^{(r)}$, $E_x^{(t)}$ of the E-field must satisfy the continuity condition at the interface, as do the tangential components $H_y^{(i)}$, $H_y^{(r)}$, $H_y^{(t)}$ of the *H*-field. Therefore,

 \mathbf{E}_{\parallel} continuity: $E_0 \cos \theta + \rho_p E_0 \cos \theta = \tau_p E_0 \cos \theta \rightarrow 1 + \rho_p = \tau_p$.

$$
\boldsymbol{H}_{\parallel} \text{ continuity:} \ \ Z_0^{-1} E_0 - Z_0^{-1} \rho_p E_0 = \frac{\tau_p \varepsilon(\omega) E_0 \cos \theta}{z_0 \sqrt{\varepsilon(\omega) - \sin^2 \theta}} \qquad \to \quad 1 - \rho_p = \frac{\tau_p \varepsilon(\omega) \cos \theta}{\sqrt{\varepsilon(\omega) - \sin^2 \theta}} \, .
$$

Solving the above equations, we find $\rho_p = \frac{\sqrt{\varepsilon(\omega) - \sin^2 \theta - \varepsilon(\omega) \cos \theta}}{\sqrt{\varepsilon(\omega) - \sin^2 \theta + \varepsilon(\omega) \cos \theta}}$ and $\tau_p = \frac{2\sqrt{\varepsilon(\omega) - \sin^2 \theta}}{\sqrt{\varepsilon(\omega) - \sin^2 \theta + \varepsilon(\omega) \cos \theta}}$.

e) Since $\varepsilon(\omega)$ is real-valued and negative, ρ_p may be written as follows:

$$
\rho_p = \frac{\mathrm{i}\sqrt{|\varepsilon(\omega)| + \sin^2\theta} + |\varepsilon(\omega)|\cos\theta}{\mathrm{i}\sqrt{|\varepsilon(\omega)| + \sin^2\theta} - |\varepsilon(\omega)|\cos\theta}
$$

Thus ρ_p is seen to be the ratio of a complex number to its conjugate, which has a magnitude of 1. Since $|\rho_p| = 1$, the reflectivity is 100%. This does not contradict the existence of electromagnetic waves within the plasma, because the time-averaged Poynting vector of the plane-wave inside the plasma, like that of an evanescent wave, has a vanishing z-component.

1