Problem 7.74)

a)
$$\mathbf{k} = k_0 \hat{\mathbf{z}} = (\omega/c) \hat{\mathbf{z}}.$$

- b) The beam is linearly-polarized if either $E_{x0}=0$ or $E_{y0}=0$ or $\varphi_{x0}=\varphi_{y0}$ or $\varphi_{x0}=\varphi_{y0}\pm\pi$. The beam is circularly-polarized if $E_{x0}=E_{y0}$ and $\varphi_{x0}-\varphi_{y0}=\pm\pi/2$. Under all other circumstances, the beam will be elliptically-polarized.
- c) Starting with the assumption that the amplitude and phase of the *H*-field components are (H_{x0}, ψ_{x0}) and (H_{y0}, ψ_{y0}) , we write

$$\boldsymbol{H}(\boldsymbol{r},t) = H_{x0}\cos(k_0z - \omega t + \psi_{x0})\,\hat{\boldsymbol{x}} + H_{v0}\cos(k_0z - \omega t + \psi_{v0})\,\hat{\boldsymbol{y}}.$$

Maxwell's 3rd equation then yields

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \qquad \rightarrow \qquad -\frac{\partial E_{y}}{\partial z} \hat{\boldsymbol{x}} + \frac{\partial E_{x}}{\partial z} \hat{\boldsymbol{y}} = -\mu_{0} \left(\frac{\partial H_{x}}{\partial t} \hat{\boldsymbol{x}} + \frac{\partial H_{y}}{\partial t} \hat{\boldsymbol{y}} \right).$$

Consequently,

$$-\frac{\partial E_{y}}{\partial z} = -\mu_{0} \frac{\partial H_{x}}{\partial t} \rightarrow k_{0} E_{y0} \sin(k_{0} z - \omega t + \varphi_{y0}) = -\mu_{0} H_{x0} \omega \sin(k_{0} z - \omega t + \psi_{x0})$$

$$\rightarrow (\omega/c) E_{y0} \sin(k_{0} z - \omega t + \varphi_{y0}) = -\mu_{0} H_{x0} \omega \sin(k_{0} z - \omega t + \psi_{x0})$$

$$\rightarrow H_{x0} = -E_{y0}/(\mu_{0} c) = -E_{y0}/Z_{0} \quad \text{and} \quad \psi_{x0} = \varphi_{y0}.$$

Similarly,

$$\frac{\partial E_x}{\partial z} = -\mu_0 \frac{\partial H_y}{\partial t} \rightarrow -k_0 E_{x0} \sin(k_0 z - \omega t + \varphi_{x0}) = -\mu_0 H_{y0} \omega \sin(k_0 z - \omega t + \psi_{y0})$$

$$\rightarrow (\omega/c) E_{x0} \sin(k_0 z - \omega t + \varphi_{x0}) = \mu_0 H_{y0} \omega \sin(k_0 z - \omega t + \psi_{y0})$$

$$\rightarrow H_{y0} = E_{x0}/(\mu_0 c) = E_{x0}/Z_0 \quad \text{and} \quad \psi_{y0} = \varphi_{x0}.$$

d) Direct multiplication of the E-field into the H-field obtained in part (c) now yields

$$S(r,t) = Z_0^{-1} \left[E_{x0} \cos(k_0 z - \omega t + \varphi_{x0}) \, \widehat{\mathbf{x}} + E_{y0} \cos(k_0 z - \omega t + \varphi_{y0}) \, \widehat{\mathbf{y}} \right]$$

$$\times \left[-E_{y0} \cos(k_0 z - \omega t + \varphi_{y0}) \, \widehat{\mathbf{x}} + E_{x0} \cos(k_0 z - \omega t + \varphi_{x0}) \, \widehat{\mathbf{y}} \right]$$

$$= Z_0^{-1} \left[E_{x0}^2 \cos^2(k_0 z - \omega t + \varphi_{x0}) + E_{y0}^2 \cos^2(k_0 z - \omega t + \varphi_{y0}) \right] \hat{\mathbf{z}}.$$

The Poynting vector S(r,t) is the rate of flow of electromagnetic energy per unit area per unit time, evaluated at the point r in space and at the instant t of time. It *must* satisfy the energy continuity equation at *all* points r in space at *all* instants t in time.

e) For circular-polarization, we have $E_{x0}=E_{y0}$ and $\varphi_{x0}=\varphi_{y0}\pm\pi/2$. Therefore,

$$S(r,t) = Z_0^{-1} E_{x0}^2 [\cos^2(k_0 z - \omega t + \varphi_{x0}) + \sin^2(k_0 z - \omega t + \varphi_{x0})] \hat{\mathbf{z}} = Z_0^{-1} E_{x0}^2 \hat{\mathbf{z}}.$$

Clearly, the above expression is independent of z and t. The electromagnetic energy thus flows uniformly and at the constant rate of E_{x0}^2/Z_0 along the z-axis

f) For a linearly-polarized beam, we will have

$$S(r,t) = Z_0^{-1} (E_{x0}^2 + E_{y0}^2) \cos^2(k_0 z - \omega t + \varphi_{x0}) \hat{\mathbf{z}}.$$

The above **S** obviously varies with both z and t. This means that at any given time, say, $t=t_0$, the energy crossing a plane perpendicular to the z-axis at z_1 is different from the energy crossing another perpendicular plane at z_2 . Conservation of energy is not violated, however, because, unlike the case of circular-polarization, the energy stored in the E and E fields in the region between z_1 and z_2 is not constant in this case. Recall that Poynting's theorem in free-space requires that $\nabla \cdot \mathbf{S} + \partial (\frac{1}{2}\varepsilon_0 \mathbf{E} \cdot \mathbf{E} + \frac{1}{2}\mu_0 \mathbf{H} \cdot \mathbf{H})/\partial t = 0$. Consequently, the difference between the energy entering at $z=z_1$ and the energy leaving at $z=z_2$ is given to (or taken away from) the energy stored in the E and E fields in the space between E and E and E fields in the space between E and E and E fields in the space between E and E and E fields in the space between E and E and E fields in the space between E and E and E fields in the space between E and E and E fields in the space between E and E and E fields in the space between E and E and E fields in the space between E fields in the space E fields in th