Opti 501

Solutions

Problem 7.72) a) The *E*-field energy-density is $\frac{1}{2}\varepsilon_0 |E|^2$. Since the *E*-field oscillates with frequency ω_0 , time-averaging yields the average *E*-field energy-density as $\frac{1}{4}\varepsilon_0 E_0^2$. Multiplying this into the volume *cTA* of the pulse, we obtain the *E*-field energy of the pulse as $\frac{1}{4}\varepsilon_0 cTAE_0^2$. Similarly, the amplitude of the *H*-field of the light is $H_0 = E_0/Z_0$. Since the time-averaged magnetic energy density in vacuum is given by $\frac{1}{4}\mu_0 H_0^2 = \frac{1}{4}\varepsilon_0 E_0^2$, the magnetic energy of the pulse is equal to its electric energy. The total energy is thus given by $\frac{1}{2}\varepsilon_0 cTAE_0^2$.

Alternatively, we may compute the time-averaged Poynting vector as follows:

$$< \mathbf{S} > = \frac{1}{2} \operatorname{Re}(\mathbf{E} \times \mathbf{H}^*) = \frac{1}{2} E_0 H_0 \hat{\mathbf{z}} = [E_0^2 / (2Z_0)] \hat{\mathbf{z}}.$$

This is the rate of flow of energy per unit area per unit time at any given cross-section of the light pulse. Multiplication with A and T then yields the total energy of the pulse as $ATE_0^2/(2Z_0)$. Considering that $\varepsilon_0 c = 1/Z_0$, the two expressions obtained above for the total pulse energy are exactly the same.

b) The reflected pulse has the same frequency ω_0 and the same wavelength $\lambda_0 = 2\pi c/\omega_0$ as the incident pulse. Its polarization state is also linear and in the same direction as the incident polarization. The pulse duration and cross-sectional area remain *T* and *A*, respectively. The only things that change are the field amplitudes E_0 and H_0 , which are multiplied by the Fresnel reflection coefficient $\rho = (1-n)/(1+n)$. The reflected pulse energy is therefore given by ρ^2 times the incident pulse energy, that is, $(1-n)^2 A T E_0^2 / [2Z_0(1+n)^2]$.

c) The Fresnel transmission coefficient at the entrance facet of the glass slab is $\tau = 1 + \rho = 2/(1+n)$. This means that the *E*-field amplitude inside the glass slab is $2E_0/(1+n)$. The *H*-field amplitude is *n* times the *E*-field amplitude divided by Z_0 , that is, $H_0 = 2nE_0/[Z_0(1+n)]$. Therefore, the *z*-component of the Poynting vector inside the slab is $\langle S_z \rangle = 2nE_0^2/[Z_0(1+n)^2]$. Since the pulse duration *T* and the cross-sectional area *A* inside the slab remain the same as outside, the total energy of the transmitted pulse is $2nATE_0^2/[Z_0(1+n)^2]$. Other properties of the transmitted pulse are: frequency= ω_0 , wavelength $\lambda = \lambda_0/n$, pulse length=cT/n, polarization state = linear and in the same direction as the incident pulse.

Alternatively, one may evaluate the energy densities of the E and H fields separately, then add them together. We find

Time-averaged *E*-field energy density $= \frac{1}{4}\varepsilon_o \varepsilon(\tau E_0)^2 = \frac{1}{4}\varepsilon_o n^2 [2E_0/(1+n)]^2 = \varepsilon_o n^2 E_0^2/(1+n)^2$. Time-averaged *H*-field energy density $= \frac{1}{4}\mu_o(n\tau E_0/Z_o)^2 = \frac{1}{4}\mu_o\{2nE_0/[Z_o(1+n)]\}^2 = \varepsilon_o n^2 E_0^2/(1+n)^2$.

Adding the above energy densities, then multiplying by the pulse volume cAT/n yields the same result as before, namely, transmitted pulse energy $= 2\varepsilon_0 c nATE_0^2/(1+n)^2$.

d) Reflected plus transmitted pulse energy =

 $(1-n)^{2} A T E_{0}^{2} / [2Z_{0}(1+n)^{2}] + 2n A T E_{0}^{2} / [Z_{0}(1+n)^{2}] = A T E_{0}^{2} / (2Z_{0}).$

This is the same as the incident pulse energy; therefore, energy is conserved.