Problem 7.68)

a)
$$\boldsymbol{E}(z,t) = E_{o}\hat{\boldsymbol{x}}\sin(kz - \omega t) + E_{o}\hat{\boldsymbol{x}}\sin(kz + \omega t) = 2E_{o}\hat{\boldsymbol{x}}\sin(kz)\cos(\omega t).$$

$$\boldsymbol{H}(z,t) = Z_{o}^{-1}E_{o}\hat{\boldsymbol{y}}\left[\sin(kz - \omega t) - \sin(kz + \omega t)\right] = -2Z_{o}^{-1}E_{o}\hat{\boldsymbol{y}}\cos(kz)\sin(\omega t).$$

b) Denoting the electromagnetic energy-density at point z and instant t by $\mathcal{E}(z,t)$, we will have

$$\mathcal{E}(z,t) = \frac{1}{2}\varepsilon_{o}E^{2}(z,t) + \frac{1}{2}\mu_{o}H^{2}(z,t) = 2\varepsilon_{o}E_{o}^{2}\sin^{2}(kz)\cos^{2}(\omega t) + 2\mu_{o}Z_{o}^{-2}E_{o}^{2}\cos^{2}(kz)\sin^{2}(\omega t)$$
$$= 2\varepsilon_{o}E_{o}^{2}\sin^{2}(kz)(1-\sin^{2}\omega t) + 2\varepsilon_{o}E_{o}^{2}\cos^{2}(kz)\sin^{2}(\omega t)$$
$$= 2\varepsilon_{o}E_{o}^{2}[\sin^{2}(kz) + \cos(2kz)\sin^{2}(\omega t)].$$

Integration of the above energy-density over z from 0 to L yields L/2 for $\sin^2(kz)$ and zero for $\cos(2kz)$. The total energy contained in the cavity thus turns out to be $\varepsilon_0 E_0^2 AL$, independent of time. The number of photons is now found to be $\mathcal{N} = \varepsilon_0 E_0^2 AL/(\hbar\omega)$. At any given moment, one-half of these photons may be said to be propagating from left to right, while the remaining half travel from right to left.

c) At z=0, the magnetic field at the mirror surface is $H(z=0^+,t)=-2Z_o^{-1}E_o\hat{y}\sin(\omega t)$. Since the fields inside a perfect conductor are always zero, Maxwell's boundary conditions require that $J_s(z=0,t)=2Z_o^{-1}E_o\hat{x}\sin(\omega t)$. The effective magnetic field acting on this surface-current is the average of the *H*-fields immediately in front of and immediately beneath the surface, that is, $H_{\rm eff}(z=0,t)=-Z_o^{-1}E_o\hat{y}\sin(\omega t)$. The Lorentz force-density exerted by this field on the surface current J_s is, therefore, going to be

$$J_{s}(z=0,t) \times \mu_{o} H_{eff}(z=0,t) = 2Z_{o}^{-1} E_{o} \sin(\omega t) \hat{x} \times [-\mu_{o} Z_{o}^{-1} E_{o} \sin(\omega t) \hat{y}] = -2\varepsilon_{o} E_{o}^{2} \sin^{2}(\omega t) \hat{z}.$$

Time-averaging and integration over the surface area of the mirror yields a total force equal to $\langle F(z=0,t)\rangle = -\varepsilon_0 E_0^2 A \hat{z}$. A similar procedure (or an argument from symmetry) yields the force on the mirror located at z=L as $\langle F(z=L,t)\rangle = \varepsilon_0 E_0^2 A \hat{z}$.

- d) The work done by radiation pressure in moving the mirror a distance Δz adds to the kinetic energy of the mirror. Since the mirror is stationary at first, the work done in moving it from z = L to $z = L + \Delta z$ must be equal to its final kinetic energy, that is, $\frac{1}{2}MV^2 = F_z\Delta z = \varepsilon_0 E_0^2 A \Delta z$.
- e) For the forward propagating wave inside the cavity, the Poynting vector is given by

$$S(z,t) = E(z,t) \times H(z,t) = E_0 \sin(kz - \omega t) \hat{x} \times Z_0^{-1} E_0 \sin(kz - \omega t) \hat{y} = Z_0^{-1} E_0^2 \sin^2(kz - \omega t) \hat{z}$$

The electromagnetic momentum density is given by $S(z,t)/c^2$. Integration over the volume of the cavity thus yields the total momentum content of the forward-propagating wave as $\frac{1}{2}\varepsilon_0 E_0^2 AL/c$. Upon reflection from the mirror located at z=L, twice this momentum will be

transferred to the mirror during the time interval $\frac{1}{2}\Delta t = L/c$, which is the time it takes for the entire forward-propagating wave within the cavity to bounce off the front mirror. By this time, the other plane-wave has turned around and is now propagating in the forward direction, so, during the next $\frac{1}{2}\Delta t$ interval, another transfer of momentum (from the electromagnetic field to the front mirror) takes place. The total momentum acquired by the front mirror between $t = t_0$ and $t = t_0 + 2L/c$ is, therefore, given by $MV = 2\varepsilon_0 E_0^2 A L/c = \varepsilon_0 E_0^2 A \Delta t$. This result is also consistent with Newton's law, $F = d\mathbf{p}/dt$, when applied to the front mirror under the influence of the electromagnetic force $\langle F(z=L,t)\rangle = \varepsilon_0 E_0^2 A \hat{z}$. Alternatively, one could obtain the momentum of the mirror by multiplying the total number of photons \mathcal{N} , computed in part (b), with *twice* the momentum of each photon, $\hbar \omega/c$, thus arriving at $MV = 2\mathcal{N}\hbar \omega/c = 2\varepsilon_0 E_0^2 A L/c$.

f) Since
$$L = N\lambda/2 = \pi cN/\omega$$
, we have $dL/d\omega = -\pi cN/\omega^2 = -L/\omega$. Therefore, $\Delta z/L = -\Delta \omega/\omega$.

g) In part (d) we found that $\frac{1}{2}MV^2 = \varepsilon_0 E_0^2 A \Delta z$. Writing $\frac{1}{2}MV^2 = \frac{1}{2}(MV)V$ and substituting for the momentum MV the result obtained in part (e), namely, $MV = \varepsilon_0 E_0^2 A \Delta t$, we find $\Delta z = \frac{1}{2}V\Delta t$. This should not come as a surprise, however, considering that over the short time interval Δt , the radiation pressure exerts a constant force on the front mirror, resulting in a constant acceleration a. Since $\Delta z = \frac{1}{2}a(\Delta t)^2$ and $V = a\Delta t$, it is obvious that Δz must be equal to $\frac{1}{2}V\Delta t$. None of the results obtained thus far require the restriction of Δt to the specific value 2L/c; in other words, we expect to find the same results for *any* sufficiently small Δt .

Next, we substitute the above Δz into the expression for $\Delta \omega/\omega$ obtained in part (f). We find

$$\Delta \omega/\omega = -\Delta z/L = -\frac{1}{2}V\Delta t/L = -\frac{V}{c}$$
.

This is the formula for the Doppler shift upon reflection from a flat mirror moving at the constant velocity $\frac{1}{2}V\hat{z}$, which, in the system under consideration, is the *average* mirror velocity during the time interval $\Delta t = 2L/c$. What is special about $\Delta t = 2L/c$ is that it is the time interval during which each and every photon inside the cavity gets exactly one chance to bounce off the front mirror. Without this restriction, one does *not* arrive at the Doppler relation between $\Delta \omega$ and the (average) mirror velocity. The red-shift (or cooling down) of the photons is a direct consequence of their transfer of energy and momentum to the free-standing mirror.

At much later times, when $t \gg t_0$, the free mirror will have an initial velocity V in the beginning of each cycle, reaching $V + \delta V$ after a time interval $\Delta t = 2L/c$. (L is now the length of the cavity in the beginning of the cycle.) The increase in the kinetic energy of the mirror will then be $F_z \Delta z = MV \delta V$, whereas the change in the mirror's momentum will be $F_z \Delta t = M\delta V$. Consequently, $\Delta z = V\Delta t$ and $\Delta \omega/\omega = -\Delta z/L = -2V/c$, which is the Doppler shift upon reflection from a mirror moving at an average velocity $V + \frac{1}{2}\delta V$, provided, of course, that δV is negligible compared to V.