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Problem 7.66)
a) The plane-waves’ E- and H-fields have the following general form:
E(r,t)=E expli(k-r—-o,t)],
H(r,t)=H expli(k-r—aw,t)].
For the incident (1), reflected (r), and transmitted (t) beams we have
kY =@ ,@,/c)(sin @y —cos 07),
kY = (n,0,/c) (sin 0 + cos 63),
kY= (n,m,/c)(sin@'y—cos'z).
In what follows, we shall use Maxwell’s 31 equation, Vx E =—JB/0t, to relate the H-field
to the E-field via the unit vector k =k/k along the propagation direction, namely,
H =kxE, /(u0)=n/Z)kxE,.
Defining the Fresnel reflection and transmission coefficients for p- and s-light as p,, ps, 7,
and 7y, we write
Eo(i) = Es(i)fc + Ep(i) (cos @y +sin 0z),
Ho(i) =(n,/Z,)(sin@y—cosOz)x Eo(i) =(n,/ ZO)[Ep(i)fc - Es(i) (cos @y +sin6z)].

Eo(r) _ psEs(i),Q+ppEp(i)(cos 0y —sin 07),
Ho(r) = (n,/Z,)(sin@y +cos Qé)xEo(r) =(n,/Z,) [—PpEp(i)fC"'PsEs(i)(Cos 0y —sin 02)].
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E' =t E " x+7,E " (cosOy+sinb'z),
H" = (n,/Z.)(sin@y—cos@'3)x E,V) = (n,/Z,) [prp(l)fc—TSES(l)(cos 0'y+sin6'z)].

Note that the Snell’s law requirement, kD=k® = g readily satisfied for the reflected

y y y 2
beam by setting Q(r)=9(‘)=9, whereas for the transmitted beam we must have »n;sin@=n;sind".

Also, within the transmission medium, (ky2+ k? )(t)= (nza)o/c)2 results in the following relation:

kz(‘)z —(nywo/c)cos@'=—(nya,/c) V1 —sin’@". As long as sin@' is below unity, the argument of the
square root will be non-negative and, therefore, the sign of the square root will be positive (by
convention). However, when n;siné >n,, the square root becomes imaginary, necessitating a
choice between + and — for its sign. In the geometry chosen for this problem, we must choose
cos@' =1Vsin“0'—1 = i\/(nlz sin“6/ nf) —1, to ensure that the evanescent wave inside the
transmission medium decays exponentially away from the interface. Note also that 7, is defined
slightly differently here than in Chapter 7; here 7, is the transmission coefficient for £, not E,.




b) To satisfy the boundary conditions we equate the tangential components of the £- and H-fields
across the interface. We will have

Continuity of E: E_Q(i) + pSES(i) = TSES(i) - l1+p, =7,
Continuity of E): Ep(i)cos 0+ ppEp(i)cos 0= rpEp(i)cos o' -  (I+p,)cosf=17,cos0',
Continuity of H,: nlEp(l) - nlppEp(l) = nzrpEp(l) — n(l-p,)=n,z,,

Continuity of H,: —nlEs(i)cos 0 +n 1,osEs(i)cos 0= —nerES(i) cos@ — n(1-p,)cos@=n,7 cosd.

The 1* and 4™ of the above equations then yield

_n,cosf—n,cost 2n,cos 6

T, = .
n,cos@+n,cosd'’ *  n,cos@+n,cosd’
Similarly, from the 2" and 3™ equations we find

n,cos@ —n,cosd 2n,cos @
= T
p

P

9 - .
n,cosd +n,cosb n,cos@ +n,cosl

c) When p,=0 we have n,cos@’ =n,cos6, from which, after some algebraic manipulations, we

obtain tan@=n,/n; and tan@'=n,/n,. This incidence angle at which the reflectivity of p-polarized
light vanishes is known as Brewster’s angle, @g. There is no Brewster’s angle for s-light.

d) When cos@’ becomes imaginary, the magnitudes of both p, and p; become unity, that is,
lpp|=|ps|=1. This is because these Fresnel coefficients assume the form (a —1b)/(a +1b), which,
as the ratio of two complex numbers of equal magnitude, has a magnitude of 1. As mentioned
earlier, for cos@’ to become imaginary, the incidence angle must exceed a certain critical angle,
i.e., n;sin@ >n,, which happens when n;>n; and 8> @,;;=arcsin(n,/n;). These conditions apply
to p-light and s-light alike. Beyond the critical angle 8., both p- and s-polarized incident beams
get totally reflected at the interface, although the phase of the reflection coefficient p, differs
from that of p; at any given incidence angle 6.




