Problem 7.62) a) The expression for the *E*-field is $E(r,t) = E_0 \exp[i(k \cdot r - \omega t)]$. The *k*-vector is, in general, complex-valued, meaning that $k = k' + ik''$. The propagation direction is given by k', while *k* " specifies the direction along which the beam is attenuated (whenever $k'' \neq 0$). The *E*field amplitude is given by the complex-valued vector $\mathbf{E}_{o} = \mathbf{E}'_{o} + i \mathbf{E}''_{o}$. In the MKSA system of units, *E* and E_0 have units of *volt/meter*, *k* has units of m^{-1} , and ω has units of sec^{-1} (or *radians*/*sec*).

b) If the real-valued vectors E_i' and E_i'' are aligned with each other, or if one of them happens to be zero, then the *E*-field is said to be linearly-polarized. When both E_i' and E_i'' are non-zero and also have different orientations in space, the *E*-field is circularly or elliptically polarized. (For circular polarization, E'_o and E''_o must have equal magnitudes and be perpendicular to each other.)

c) The expression for the *H*-field is $H(r,t) = H_0 \exp[i(k \cdot r - \omega t)]$. The *H*-field amplitude is given by the complex-valued vector $H_0 = H_0' + iH_0''$. In the MKSA system of units, *H* and H_0 have units of *ampere*/*meter*.

d) In the absence of $P(r,t)$ and $\rho_{\text{free}}(r,t)$, we will have $D(r,t) = \varepsilon_{0} E(r,t)$, and Maxwell's 1st equation reduces to $\nabla \cdot \mathbf{E}(\mathbf{r},t) = 0$. Substituting the *E*-field distribution of part (a) in this equation then yields $\mathbf{k} \cdot \mathbf{E}_{\text{o}} = 0$, which is the constraint imposed on \mathbf{k} and \mathbf{E}_{o} by Maxwell's 1st equation.

e) Using the *E*- and *H*-field distributions given in (a) and (c), Maxwell's 2nd equation yields: $k \times H_0 = -\omega \varepsilon_0 E_0$, which is the only constraint imposed by the 2nd equation on *k*, ω , E_0 , and H_0 .

f) Using the E - and H -field distributions given in (a) and (c), Maxwell's $3rd$ equation yields: $k \times E_{\circ} = \omega \mu_{\circ} H_{\circ}$, which is the only constraint imposed by the 3rd equation on *k*, ω , E_{\circ} , and H_{\circ} .

g) In the absence of $M(r,t)$ we will have $B(r,t) = \mu_0 H(r,t)$, and Maxwell's 4th equation reduces to $\nabla \cdot H(r,t) = 0$. Substituting the *H*-field distribution of part (c) in this equation then yields $\mathbf{k} \cdot \mathbf{H}_0 = 0$, which is the sole constraint imposed on \mathbf{k} and \mathbf{H}_0 by Maxwell's 4th equation.

h) In part (f) we found $H_0 = (\omega \mu_0)^{-1} k \times E_0$. Substituting this expression for H_0 into the constraint obtained in part (e) yields: $\mathbf{k} \times [(\omega \mu_{0})^{-1} \mathbf{k} \times \mathbf{E}_{0}] = -\omega \varepsilon_{0} \mathbf{E}_{0}$. Using the vector identity $A \times (B \times C) = (A \cdot C)B - (A \cdot B)C$ we write the preceding equation as $(k \cdot E_0)k - (k \cdot k)E_0 =$ $-\mu_0 \varepsilon_0 \omega^2 E_0$. From part (d) we know that $\mathbf{k} \cdot \mathbf{E}_0 = 0$; therefore, $(\mathbf{k} \cdot \mathbf{k}) \mathbf{E}_0 = \mu_0 \varepsilon_0 \omega^2 \mathbf{E}_0$. Dropping \mathbf{E}_0 from both sides of this equation and using the fact that $\mu_0 \varepsilon_0 = 1/c^2$ now yields $k^2 = (\omega/c)^2$, which is the desired dispersion relation.