Problem 7.62) a) The expression for the *E*-field is $E(\mathbf{r},t) = \mathbf{E}_{o} \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$. The *k*-vector is, in general, complex-valued, meaning that $\mathbf{k} = \mathbf{k}' + i\mathbf{k}''$. The propagation direction is given by \mathbf{k}' , while \mathbf{k}'' specifies the direction along which the beam is attenuated (whenever $k'' \neq 0$). The *E*-field amplitude is given by the complex-valued vector $\mathbf{E}_{o} = \mathbf{E}_{o}' + i\mathbf{E}_{o}''$. In the MKSA system of units, \mathbf{E} and \mathbf{E}_{o} have units of *volt/meter*, \mathbf{k} has units of m^{-1} , and ω has units of sec^{-1} (or *radians/sec*).

b) If the real-valued vectors E'_{o} and E''_{o} are aligned with each other, or if one of them happens to be zero, then the *E*-field is said to be linearly-polarized. When both E'_{o} and E''_{o} are non-zero and also have different orientations in space, the *E*-field is circularly or elliptically polarized. (For circular polarization, E'_{o} and E''_{o} must have equal magnitudes and be perpendicular to each other.)

c) The expression for the *H*-field is $H(r,t) = H_o \exp[i(k \cdot r - \omega t)]$. The *H*-field amplitude is given by the complex-valued vector $H_o = H'_o + iH''_o$. In the MKSA system of units, *H* and H_o have units of *ampere/meter*.

d) In the absence of P(r,t) and $\rho_{\text{free}}(r,t)$, we will have $D(r,t) = \varepsilon_0 E(r,t)$, and Maxwell's 1st equation reduces to $\nabla \cdot E(r,t) = 0$. Substituting the *E*-field distribution of part (a) in this equation then yields $\mathbf{k} \cdot \mathbf{E}_0 = 0$, which is the constraint imposed on \mathbf{k} and \mathbf{E}_0 by Maxwell's 1st equation.

e) Using the *E*- and *H*-field distributions given in (a) and (c), Maxwell's 2nd equation yields: $\mathbf{k} \times \mathbf{H}_{o} = -\omega \varepsilon_{o} \mathbf{E}_{o}$, which is the only constraint imposed by the 2nd equation on \mathbf{k} , ω , \mathbf{E}_{o} , and \mathbf{H}_{o} .

f) Using the *E*- and *H*-field distributions given in (a) and (c), Maxwell's 3rd equation yields: $\mathbf{k} \times \mathbf{E}_{o} = \omega \mu_{o} \mathbf{H}_{o}$, which is the only constraint imposed by the 3rd equation on \mathbf{k} , ω , \mathbf{E}_{o} , and \mathbf{H}_{o} .

g) In the absence of $M(\mathbf{r},t)$ we will have $B(\mathbf{r},t) = \mu_0 H(\mathbf{r},t)$, and Maxwell's 4th equation reduces to $\nabla \cdot H(\mathbf{r},t) = 0$. Substituting the *H*-field distribution of part (c) in this equation then yields $\mathbf{k} \cdot \mathbf{H}_0 = 0$, which is the sole constraint imposed on \mathbf{k} and \mathbf{H}_0 by Maxwell's 4th equation.

h) In part (f) we found $H_0 = (\omega \mu_0)^{-1} \mathbf{k} \times \mathbf{E}_0$. Substituting this expression for H_0 into the constraint obtained in part (e) yields: $\mathbf{k} \times [(\omega \mu_0)^{-1} \mathbf{k} \times \mathbf{E}_0] = -\omega \varepsilon_0 \mathbf{E}_0$. Using the vector identity $A \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$ we write the preceding equation as $(\mathbf{k} \cdot \mathbf{E}_0)\mathbf{k} - (\mathbf{k} \cdot \mathbf{k})\mathbf{E}_0 = -\mu_0\varepsilon_0\omega^2\mathbf{E}_0$. From part (d) we know that $\mathbf{k} \cdot \mathbf{E}_0 = 0$; therefore, $(\mathbf{k} \cdot \mathbf{k})\mathbf{E}_0 = \mu_0\varepsilon_0\omega^2\mathbf{E}_0$. Dropping \mathbf{E}_0 from both sides of this equation and using the fact that $\mu_0\varepsilon_0 = 1/c^2$ now yields $\mathbf{k}^2 = (\omega/c)^2$, which is the desired dispersion relation.