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Opti 501 Solutions 1/2 
 
Problem 7.59) a) Denoting the vacuum wave-number of the incident and reflected plane-waves 
by 𝑘𝑘0 = 𝜔𝜔 𝑐𝑐⁄ , the incident 𝑬𝑬 and 𝑯𝑯 fields inside the glass prism are given by 

 𝑬𝑬i(𝒓𝒓, 𝑡𝑡) = 𝐸𝐸0[(cos𝜃𝜃 𝒙𝒙� + sin𝜃𝜃 𝒛𝒛�) ± i𝒚𝒚�] exp[i(𝑛𝑛𝑘𝑘0 sin𝜃𝜃 𝑥𝑥 − 𝑛𝑛𝑘𝑘0 cos 𝜃𝜃 𝑧𝑧 − 𝜔𝜔𝑡𝑡)]. (1) 

 𝑯𝑯i(𝒓𝒓, 𝑡𝑡) = �𝑛𝑛𝐸𝐸0
𝑍𝑍0
� [−𝒚𝒚� ± i(cos𝜃𝜃 𝒙𝒙� + sin 𝜃𝜃 𝒛𝒛�)] exp[i(𝑛𝑛𝑘𝑘0 sin 𝜃𝜃 𝑥𝑥 − 𝑛𝑛𝑘𝑘0 cos 𝜃𝜃 𝑧𝑧 − 𝜔𝜔𝑡𝑡)]. (2) 

b) The reflected beam is similar to the incident beam, except that the signs of its 𝑘𝑘𝑧𝑧, 𝐸𝐸𝑧𝑧, 𝐻𝐻𝑥𝑥, and 
𝐻𝐻𝑦𝑦 are reversed, while its corresponding field amplitudes are multiplied by 𝜌𝜌𝑝𝑝 and 𝜌𝜌𝑠𝑠, as follows: 

 𝑬𝑬r(𝒓𝒓, 𝑡𝑡) = 𝐸𝐸0�𝜌𝜌𝑝𝑝(cos𝜃𝜃 𝒙𝒙� − sin𝜃𝜃 𝒛𝒛�) ± i𝜌𝜌𝑠𝑠𝒚𝒚�� exp[i(𝑛𝑛𝑘𝑘0 sin𝜃𝜃 𝑥𝑥 + 𝑛𝑛𝑘𝑘0 cos 𝜃𝜃 𝑧𝑧 − 𝜔𝜔𝑡𝑡)]. (3) 

 𝑯𝑯r(𝒓𝒓, 𝑡𝑡) = �𝑛𝑛𝐸𝐸0
𝑍𝑍0
� �𝜌𝜌𝑝𝑝𝒚𝒚� ∓ i𝜌𝜌𝑠𝑠(cos 𝜃𝜃 𝒙𝒙� − sin𝜃𝜃 𝒛𝒛�)� exp[i(𝑛𝑛𝑘𝑘0 sin𝜃𝜃 𝑥𝑥 + 𝑛𝑛𝑘𝑘0 cos 𝜃𝜃 𝑧𝑧 − 𝜔𝜔𝑡𝑡)]. (4) 

c) The dispersion relation in free space, namely, 𝑘𝑘2 = 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑧𝑧2 = 𝑘𝑘02 = (𝜔𝜔 𝑐𝑐⁄ )2, yields the 
following value for the transmitted (evanescent) beam’s 𝑘𝑘𝑧𝑧: 

 𝑘𝑘𝑧𝑧t = −�𝑘𝑘02 − 𝑘𝑘𝑥𝑥2 = −�𝑘𝑘02 − (𝑛𝑛𝑘𝑘0 sin 𝜃𝜃)2 = −i𝑘𝑘0�(𝑛𝑛 sin𝜃𝜃)2 − 1. (5) 

The components of the transmitted 𝐸𝐸-field are then found to be 

 𝐸𝐸𝑥𝑥0t = 𝜏𝜏𝑝𝑝𝐸𝐸𝑥𝑥0i = 𝜏𝜏𝑝𝑝𝐸𝐸0 cos 𝜃𝜃, (6a) 

 𝐸𝐸𝑦𝑦0t = 𝜏𝜏𝑠𝑠𝐸𝐸𝑦𝑦0i = ±i𝜏𝜏𝑠𝑠𝐸𝐸0, (6b) 

 𝐸𝐸𝑧𝑧0𝑡𝑡 = −𝑘𝑘𝑥𝑥𝐸𝐸𝑥𝑥0t

𝑘𝑘𝑧𝑧t
= 𝑛𝑛𝜏𝜏𝑝𝑝𝐸𝐸0 sin𝜃𝜃 cos𝜃𝜃

i�(𝑛𝑛 sin𝜃𝜃)2−1
. (6c) 

 𝑬𝑬t(𝒓𝒓, 𝑡𝑡) = 𝐸𝐸0 �𝜏𝜏𝑝𝑝 cos 𝜃𝜃 �𝒙𝒙� − i𝑛𝑛 sin𝜃𝜃
√𝑛𝑛2 sin2 𝜃𝜃−1

𝒛𝒛�� ± i𝜏𝜏𝑠𝑠𝒚𝒚�� 

 × exp�𝑘𝑘0√𝑛𝑛2 sin2 𝜃𝜃 − 1 𝑧𝑧� exp[i(𝑛𝑛𝑘𝑘0 sin𝜃𝜃 𝑥𝑥 − 𝜔𝜔𝑡𝑡)]. (7) 

d) 𝜵𝜵 × 𝑬𝑬t(𝒓𝒓, 𝑡𝑡) = −𝜕𝜕𝑩𝑩t(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄     →    𝒌𝒌t × 𝑬𝑬0t = 𝜔𝜔𝜇𝜇0𝑯𝑯0
t . (8) 

 𝜇𝜇0𝜔𝜔𝑯𝑯0
t = �𝑛𝑛𝑘𝑘0 sin𝜃𝜃 𝒙𝒙� − i𝑘𝑘0√𝑛𝑛2 sin2 𝜃𝜃 − 1 𝒛𝒛�� × 𝐸𝐸0 �𝜏𝜏𝑝𝑝 cos𝜃𝜃 𝒙𝒙� ± i𝜏𝜏𝑠𝑠𝒚𝒚� −

i𝑛𝑛𝜏𝜏𝑝𝑝 sin𝜃𝜃 cos𝜃𝜃
√𝑛𝑛2 sin2 𝜃𝜃−1

𝒛𝒛��. (9) 

 𝑯𝑯t(𝒓𝒓, 𝑡𝑡) = �𝐸𝐸0
𝑍𝑍0
� �±𝜏𝜏𝑠𝑠�−√𝑛𝑛2 sin2 𝜃𝜃 − 1 𝒙𝒙� + i𝑛𝑛 sin𝜃𝜃 𝒛𝒛�� + 𝜏𝜏𝑝𝑝 �

i cos𝜃𝜃
√𝑛𝑛2 sin2 𝜃𝜃−1

� 𝒚𝒚�� 

 × exp�𝑘𝑘0√𝑛𝑛2 sin2 𝜃𝜃 − 1 𝑧𝑧� exp[i(𝑛𝑛𝑘𝑘0 sin𝜃𝜃 𝑥𝑥 − 𝜔𝜔𝑡𝑡)]. (10) 

e) 〈𝑺𝑺t(𝒓𝒓, 𝑡𝑡)〉 = ½Re[𝑬𝑬t(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯t∗(𝒓𝒓, 𝑡𝑡)] 

 = �|𝐸𝐸0|2

2𝑍𝑍0
�Re �𝑛𝑛 sin𝜃𝜃 �|𝜏𝜏𝑠𝑠|2 +

|𝜏𝜏𝑝𝑝|2 cos2 𝜃𝜃
𝑛𝑛2 sin2 𝜃𝜃−1

� 𝒙𝒙� ± i𝑛𝑛𝜏𝜏𝑝𝑝𝜏𝜏𝑠𝑠∗ sin(2𝜃𝜃)𝒚𝒚� 

 +i√𝑛𝑛2 sin2 𝜃𝜃 − 1 �|𝜏𝜏𝑠𝑠|2 −
|𝜏𝜏𝑝𝑝|2 cos2 𝜃𝜃
𝑛𝑛2 sin2 𝜃𝜃−1

� 𝒛𝒛�� exp�2𝑘𝑘0√𝑛𝑛2 sin2 𝜃𝜃 − 1 𝑧𝑧�. (11) 

It is now clear that 〈𝑆𝑆𝑥𝑥〉, a real-valued positive entity, does not depend on the sense of 
circular polarization. In contrast, 〈𝑆𝑆𝑦𝑦〉 switches sign depending on the sense of circular 
polarization, that is, whether the plus or minus sign is used to describe the incident beam. The 
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time-averaged 𝑧𝑧-component of the Poynting vector, 〈𝑆𝑆𝑧𝑧〉, vanishes because the corresponding 
entity inside the brackets in Eq.(11) is purely imaginary. All three components of the Poynting 
vector decay exponentially with the distance 𝑧𝑧 from the bottom of the prism, as dictated by the 
exponential factor appearing on the right-hand-side of Eq.(11). 

Digression: The non-vanishing of the 〈𝑆𝑆𝑥𝑥〉 of the evanescent field is true for both p- and s-
polarized incident light, as it is true for circularly- and elliptically-polarized beams. It indicates 
the existence of a certain (small but measurable) forward shift of the reflected beam’s footprint 
relative to that of the incident beam, which is known as the Goos-Hänchen effect. In contrast, the 
non-vanishing of  〈𝑆𝑆𝑦𝑦〉 occurs exclusively for circularly- or elliptically-polarized incident light; it 
indicates the existence of a small but measurable lateral shift of the footprint of the reflected 
beam relative to that of the incident beam. This lateral shift, whose direction depends on the 
sense of the circular (or elliptical) incident polarization, is known as the Imbert-Fedorov effect. 
 


