Opti 501 Solutions 1/2

Problem 7.50) For a monochromatic plane-wave, the electromagnetic fields are written

$$
E(r,t) = E_0 \exp[i(k \cdot r - \omega t)], \qquad (1)
$$

$$
H(r,t) = H_{\text{o}} \exp[i(k \cdot r - \omega t)]. \tag{2}
$$

In the present problem, $\mathbf{k} = k_x \hat{\mathbf{x}} + k_z \hat{\mathbf{z}}$, while $\mathbf{E}_{0} = E_{x0} \hat{\mathbf{x}} + E_{y0} \hat{\mathbf{y}} + E_{z0} \hat{\mathbf{z}}$ and $\mathbf{H}_{0} = H_{x0} \hat{\mathbf{x}} + H_{y0} \hat{\mathbf{y}} + H_{z0} \hat{\mathbf{z}}$. In general, the *E* and *H* components are complex-valued, k_x is real, and k_z could be real or complex. In medium 1, where μ_1 and ε_1 are real and positive and the incident wave is assumed to be homogeneous, $k_{z1} = (\omega/c)\sqrt{\mu_1 \varepsilon_1 - (c k_x/\omega)^2} = (\omega/c)n_1 \cos\theta$ is a positive, real number. The only relevant parameter as far as medium 2 is concerned is $ck_y/\omega = n_1 \sin \theta$, a real number in the range from $-n_1$ to $+n_1$.

In general, the component of the time-averaged Poynting vector along the *z*-axis may be written as follows:

$$
\langle S_z(\mathbf{r},t)\rangle = \frac{1}{2}\text{Re}(\mathbf{E}\times\mathbf{H}^*)_z = \frac{1}{2}\text{exp}[-2\,\text{Im}(k_z)z]\,\text{Re}(E_{xo}H_{yo}^* - E_{yo}H_{xo}^*). \tag{3}
$$

To determine E_{xo} and H_{xo} for substitution in the above expression, we use Maxwell's $2nd$ and 3rd equations, namely,

$$
\nabla \times \mathbf{H} = \partial \mathbf{D} / \partial t \quad \rightarrow \quad \mathbf{k} \times \mathbf{H}_{0} = -\varepsilon_{0} \varepsilon \omega \mathbf{E}_{0} \quad \rightarrow \quad (k_{x} \hat{\mathbf{x}} + k_{z} \hat{\mathbf{z}}) \times (H_{x0} \hat{\mathbf{x}} + H_{y0} \hat{\mathbf{y}} + H_{z0} \hat{\mathbf{z}}) = -\varepsilon_{0} \varepsilon \omega \mathbf{E}_{0}
$$
\n
$$
\rightarrow k_{z} H_{y0} \hat{\mathbf{x}} + (k_{x} H_{z0} - k_{z} H_{x0}) \hat{\mathbf{y}} - k_{x} H_{y0} \hat{\mathbf{z}} = \varepsilon_{0} \varepsilon \omega (E_{x0} \hat{\mathbf{x}} + E_{y0} \hat{\mathbf{y}} + E_{z0} \hat{\mathbf{z}}) \rightarrow \quad E_{x0} = k_{z} H_{y0} / (\varepsilon_{0} \varepsilon \omega). \tag{4}
$$

$$
\nabla \times \mathbf{E} = -\partial \mathbf{B} / \partial t \quad \rightarrow \quad \mathbf{k} \times \mathbf{E}_{o} = \mu_{o} \mu \omega \mathbf{H}_{o} \rightarrow \quad (k_{x} \hat{\mathbf{x}} + k_{z} \hat{\mathbf{z}}) \times (E_{xo} \hat{\mathbf{x}} + E_{yo} \hat{\mathbf{y}} + E_{zo} \hat{\mathbf{z}}) = \mu_{o} \mu \omega \mathbf{H}_{o}
$$

$$
\to -k_z E_{y_0} \hat{\mathbf{x}} + (k_z E_{x_0} - k_x E_{z_0}) \hat{\mathbf{y}} + k_x E_{y_0} \hat{\mathbf{z}} = \mu_0 \mu \omega (H_{x_0} \hat{\mathbf{x}} + H_{y_0} \hat{\mathbf{y}} + H_{z_0} \hat{\mathbf{z}}) \to H_{x_0} = -k_z E_{y_0} / (\mu_0 \mu \omega). (5)
$$

The *z*-component of the Poynting vector in Eq.(3) may now be written

$$
\langle S_z(\mathbf{r},t)\rangle = \frac{1}{2} \exp\left[-2\operatorname{Im}(k_z)z\right] \text{Re}\left(\frac{k_z H_{y0} H_{y0}^*}{\varepsilon_0 \varepsilon \omega} + \frac{k_z^* E_{y0}^* E_{y0}}{\mu_0 \mu^* \omega}\right)
$$

=
$$
\frac{\exp\left[-2\operatorname{Im}(k_z)z\right]}{2(\omega/c)} \left\{Z_0 \text{Re}(k_z/\varepsilon) |H_{y0}|^2 + Z_0^{-1} \text{Re}(k_z/\mu) |E_{y0}|^2\right\}. \leftarrow \boxed{Z_0 = \sqrt{\mu_0/\varepsilon_0}} \tag{6}
$$

It is thus seen that, for *p*-polarized light associated with H_{y0} , the requirement that $\langle S_z \rangle$ be positive translates into $\text{Re}(k_z/\varepsilon) \ge 0$, whereas for *s*-polarized light associated with E_{yo} , the same constraint implies that $\text{Re}(k_z/\mu) \ge 0$. In other words, for *p*-light, the angle between k_z and ε in the complex-plane must be less than 90°, whereas for *s*-light it is the angle between k_z and μ that must be below 90º.

Now, $k_{z2} = (\omega/c)\sqrt{\mu_2 \varepsilon_2 - (c k_x/\omega)^2}$ may be readily analyzed in the complex plane. Let us first consider the case of a lossy material, i.e., one for which both μ_2 and ε_2 are in the upper-half of the complex plane. (Note: μ_2 and ε_2 are slightly above the positive real axis for a transparent positive-index material, and slightly above the negative real axis for a transparent negative-index material.) With reference to the figure below, note that if k_x , which is always a real number, starts

at zero and moves toward infinity, the argument of the square root starts at $\mu_2 \varepsilon_2$ and moves parallel to the real axis toward $-\infty$. This means that one solution for k_{z2} starts halfway between μ_2 and ε_2 and, upon increasing k_x , moves continually toward the positive imaginary axis. It is easy

to verify this result separately for cases when μ_2 and ε_2 are both in the 1st quadrant, both in the $2nd$ quadrant, and also when one is in the $1st$ and the other in the $2nd$ quadrant. In all cases, the solution for k_{z2} that has an acute angle with both μ_2 and ε_2 turns out to be the solution in the upper-half of the complex plane. The conclusion is that, for lossy (as well as transparent) media, the acceptable solution for k_{z2} , i.e., the solution that yields a positive $\langle S_z \rangle$, is the one in the upper half-plane. The field

amplitudes in medium 2 thus decay exponentially away from the interface with medium 1. Let us emphasize then, that for lossy as well as transparent media, the only acceptable solution for k_{z2} is the one that causes the electromagnetic fields to decay as they propagate along the positive *z*axis. If medium 2 happens to be transparent, the exponential decay will be extremely slow below the critical angle of total internal reflection (TIR), and fast above the critical angle.

For a gain medium, both μ_2 and ε_2 will be in the lower-half of the complex plane. The same arguments as above apply, but this time the correct solution for k_{z2} is found to be in the lower half-plane. The Poynting vector component $\langle S_z \rangle$ remains positive for both p- and *s*-polarized light, but the field amplitudes now become growing functions of *z*. This, of course, is understandable because the gain enables the beam amplitude to grow as it propagates away from the interface. Note that this result is valid irrespective of whether μ_2 and ϵ_2 are in the 3rd or 4th quadrant, and also whether the incidence angle θ is above or below the critical TIR angle.

Finally, a medium may have both loss and gain, in the sense that either ε_2 is in the upper half-plane while μ_2 is in the lower half-plane, or vice-versa. In this case, k_{z2} for p-light must be chosen to have an acute angle with ε_2 , while k_{z2} for *s*-light must make an acute angle with μ_2 . These two solutions for k_{z2} could turn out to be the same, in which case both polarization states grow or decay together as the beam propagates along *z*. Alternatively, it is possible for k_{z2} of p light to be the negative of *kz*² for *s*-light, in which case one polarization state grows while the other one decays as they propagate away from the interface. The exact behavior, of course, depends on the locations of μ_2 and ε_2 in the complex plane, as well as on the values of k_x and ω .