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Opti 501 Solutions 1/2 
 
Problem 7.50) For a monochromatic plane-wave, the electromagnetic fields are written  

 o( , ) exp[i( )],t tω= ⋅ −E r E k r  (1) 

 o( , ) exp[i( )].t tω= ⋅ −H r H k r  (2) 

In the present problem, ˆ ˆ,x zk k= +k x z  while o o o oˆ ˆ ˆx y zE E E= + +E x y z  and o o o oˆ ˆ ˆ.x y zH H H= + +H x y z  
In general, the E and H components are complex-valued, kx is real, and kz could be real or 
complex. In medium 1, where µ1 and ε1 are real and positive and the incident wave is assumed to 
be homogeneous, kz1 = (ω /c)√ µ1ε1 − (ckx/ω)2 = (ω/c)n1cosθ is a positive, real number. The only 
relevant parameter as far as medium 2 is concerned is 1/ sin ,xck nω θ=  a real number in the range 
from −𝑛𝑛1 to +𝑛𝑛1. 

In general, the component of the time-averaged Poynting vector along the z-axis may be 
written as follows: 
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2 2( , ) Re( *) exp[ 2 Im( ) ]Re( ).z x y y xz zS t k z E H E H< > = × = − −r E H  (3) 

To determine Exo and Hxo for substitution in the above expression, we use Maxwell’s 2nd and 
3rd equations, namely, 

 o o o o o o o oˆ ˆ ˆˆ ˆ/ ( ) ( )x z x y zt k k H H H∂ ∂ ε εω ε εω× = → × = − → + × + + = −H D k H E x z x y z E∇   

 o o o o o o o o o o oˆ ˆ ˆ ˆˆ ˆ( ) ( ) /( ).x z yz y x z z x x y x y zk H k H k H k E E k HH E Eε ε ε ωε ω→ + − − = + + → =x y z x y z  (4) 

 o o o o o o o oˆ ˆ ˆˆ ˆ/ ( ) ( )x z x y zt k k E E E∂ ∂ µ µω µ µω× = − → × = → + × + + =E B k E H x z x y z H∇   

 o o o o o o o o oo oˆ ˆ ˆ ˆˆ ˆ( ) ( /) ( ).x z yz y z x x z x y x y zk E k E k E k E H H H kH Eµ µ µωω µ→ − + = −− + = + + →x y z x y z  (5) 

The z-component of the Poynting vector in Eq.(3) may now be written 
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It is thus seen that, for p-polarized light associated with Hyo, the requirement that <Sz> be 
positive translates into Re(kz/ε) ≥ 0, whereas for s-polarized light associated with Eyo, the same 
constraint implies that Re(kz/µ) ≥ 0. In other words, for p-light, the angle between kz and ε  in the 
complex-plane must be less than 90º, whereas for s-light it is the angle between kz and µ that 
must be below 90º. 

Now, kz2 = (ω /c)√ µ2ε2 − (ckx/ω)2 may be readily analyzed in the complex plane. Let us first 
consider the case of a lossy material, i.e., one for which both µ2 and ε2 are in the upper-half of 
the complex plane. (Note: µ2 and ε2 are slightly above the positive real axis for a transparent 
positive-index material, and slightly above the negative real axis for a transparent negative-index 
material.) With reference to the figure below, note that if kx, which is always a real number, starts 

Zo=√ µo/εo 
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at zero and moves toward infinity, the argument of the square root starts at µ2ε2 and moves 
parallel to the real axis toward −∞. This means that one solution for kz2 starts halfway between µ2 
and ε2 and, upon increasing kx, moves continually toward the positive imaginary axis. It is easy 
to verify this result separately for cases when 
µ2 and ε2 are both in the 1st quadrant, both in 
the 2nd quadrant, and also when one is in the 1st 
and the other in the 2nd quadrant. In all cases, 
the solution for kz2 that has an acute angle with 
both µ2 and ε2 turns out to be the solution in the 
upper-half of the complex plane. The 
conclusion is that, for lossy (as well as 
transparent) media, the acceptable solution for 
kz2, i.e., the solution that yields a positive <Sz>, 
is the one in the upper half-plane. The field 
amplitudes in medium 2 thus decay exponentially away from the interface with medium 1. Let us 
emphasize then, that for lossy as well as transparent media, the only acceptable solution for kz2 is 
the one that causes the electromagnetic fields to decay as they propagate along the positive z-
axis. If medium 2 happens to be transparent, the exponential decay will be extremely slow below 
the critical angle of total internal reflection (TIR), and fast above the critical angle. 

For a gain medium, both µ2 and ε2 will be in the lower-half of the complex plane. The same 
arguments as above apply, but this time the correct solution for kz2 is found to be in the lower 
half-plane. The Poynting vector component <Sz> remains positive for both p- and s-polarized 
light, but the field amplitudes now become growing functions of z. This, of course, is 
understandable because the gain enables the beam amplitude to grow as it propagates away from 
the interface. Note that this result is valid irrespective of whether µ2 and ε2 are in the 3rd or 4th 
quadrant, and also whether the incidence angle θ  is above or below the critical TIR angle. 

Finally, a medium may have both loss and gain, in the sense that either ε2 is in the upper 
half-plane while µ2 is in the lower half-plane, or vice-versa. In this case, kz2 for p-light must be 
chosen to have an acute angle with ε2, while kz2 for s-light must make an acute angle with µ2. 
These two solutions for kz2 could turn out to be the same, in which case both polarization states 
grow or decay together as the beam propagates along z. Alternatively, it is possible for kz2 of p-
light to be the negative of kz2 for s-light, in which case one polarization state grows while the 
other one decays as they propagate away from the interface. The exact behavior, of course, 
depends on the locations of µ2 and ε2 in the complex plane, as well as on the values of kx and ω. 
 

Re 
 

Im 
 

−(ckx/ω)2 

ε2 µ2 

µ2ε2 

µ2ε2− (ckx/ω)2 
 

√µ2ε2− (ckx/ω)2 
 


